Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-23T18:55:30.415Z Has data issue: false hasContentIssue false

Ecological constraints and distribution of the primitive and enigmatic endemic Mexican butterfly Baronia brevicornis (Lepidoptera: Papilionidae)

Published online by Cambridge University Press:  02 June 2014

Luc Legal*
Affiliation:
Laboratoire d’Ecologie Fonctionnelle (EcoLab), UMR 5245, Université Paul Sabatier, Toulouse, France
Oscar Dorado
Affiliation:
Centro de Educación Ambiental e Investigación Sierra de Huautla (CEAMISH), Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
Salima Machkour-M’Rabet
Affiliation:
Laboratorio de Ecología Molecular y Conservación, GAIA-BIO, El Colegio de la Frontera Sur (ECOSUR), Avenida Centenario Km 5.5, AP 424, 77014 Chetumal, Quintana Roo, Mexico
Roxanne Leberger
Affiliation:
Laboratoire d’Ecologie Fonctionnelle (EcoLab), UMR 5245, Université Paul Sabatier, Toulouse, France
Jérôme Albre
Affiliation:
Laboratoire d’Ecologie Fonctionnelle (EcoLab), UMR 5245, Université Paul Sabatier, Toulouse, France
Nestor A. Mariano
Affiliation:
CIByC-Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
Charles Gers
Affiliation:
Laboratoire d’Ecologie Fonctionnelle (EcoLab), UMR 5245, Université Paul Sabatier, Toulouse, France
*
1Corresponding author (e-mail: [email protected]).

Abstract

Baronia brevicornis Salvin (Lepidoptera: Papilionidae) is one of the most enigmatic butterflies in the world and possibly represents the most ancient lineage among the superfamily Papilionoidea. Its geographic distribution is remote from that of all its potential close relatives and many of its biological and ecological characteristics are unique among the suborder Rhopalocera. One of its particularities is that the occurrence plots of this species seem to be independent, each representing individual populations, despite the fact that the host plant: Acacia cochliacantha Humboldt and Bonpland ex Willdenow (Fabaceae), is one of the most common Mexican Fabaceae species. Our results show that no B. brevicornis populations occur if the host plant does not cover at least two-thirds of the locality. Even in the most favourable zones, the landscape occupancy of the butterfly does not exceed 2.5% of the available habitat even when its host plant covers 50% of the area. The average density of adults was 840 individuals/ha in favourable habitats, frequently on areas of around 3 ha, below of 1400 m. Using the BIOMOD2 package and the largest available set of abiotic conditions for Mexico implemented in the WorldClim database, we propose a revised potential distribution and discuss the results of our model with field occurrence data. Evolutionary and conservation issues are discussed in the light of our results.

Type
Biodiversity & Evolution
Copyright
© Entomological Society of Canada 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Keith Summerville

References

Allouche, O., Tsoar, A., and Kadmon, R. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43: 12231232.Google Scholar
Aubert, J., Legal, L., Descimon, H., and Michel, F. 1999. Molecular phylogeny of swallowtail butterflies of the tribe Papilionini (Papilionidae, Lepidoptera). Molecular Phylogenetics and Evolution, 12: 156167.CrossRefGoogle ScholarPubMed
Badan, A. 2003. The effects of El Nino in Mexico: a survey. Geofisica Internacional, 42: 567571.Google Scholar
Barbet-Massin, M., Jiguet, F., Albert, C.H., and Thuiller, W. 2012. Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution, 3: 327338.Google Scholar
Barbour, M.G., Burk, J.H., and Pitts, W.D. 1987. Terrestrial plant ecology, 2nd edition, Benjamin/Cummings Publishing Company, Menlo Park, California, United States of America.Google Scholar
Beutelspacher, C.R. 1982. Lepidópteros de Chamela, Jalisco, México I. Rhopalocera. Anales del Instituto de Biología. Universidad Nacional Autónoma de México (Zoología), 52: 371388.Google Scholar
Chávez-Juárez, J., Dorado, O., and Arias, D.M. 2010. Herpetofauna: anfibios y reptiles Reserva de la Biosfera Sierra de Huautla. Universidad Autónoma del Estado de Morelos-Trópico Seco-Cuernavaca, Morelos, Mexico.Google Scholar
Clarke, D.H., Downie, S.R., and Seigler, D.S. 2000. Implications of chloroplast DNA restriction site variation for systematics of Acacia (Fabaceae: Mimosoideae). Systematic Botany, 25: 618632.Google Scholar
Cowley, M., Wilson, R.J., León-Cortés, J.L., Gutiérrez, D., Bulman, C.R., and Thomas, C.D. 2000. Habitat-based statistical models for predicting the spatial distribution of butterflies and day-flying moths in a fragmented landscape. Journal of Applied Ecology, 37: 6072.Google Scholar
De la Maza, J., White, J., and White, A. 1987. Observaciones sobre el polimorfismo femenino de Baronia brevicornis Salv. (Papilionidae: Baroniinae) con la descripción de una nueva subespecies del Estado de Chiapas, México. Revista de la Sociedad Mexicana de Lepidopterologia, 11: 313.Google Scholar
Dorado, O., Arias, D.M., Ramírez, R., and Sousa, M. 2005. Leguminosas de la Sierra de Huautla. Centro de Educación Ambiental e Investigación Sierra de Huautla, Conabio, Cuernavaca, Morelos, Mexico.Google Scholar
Eisner, T. 2003. Living fossils: on lampreys, Baronia, and the search for medicinals. BioScience, 53: 265269.Google Scholar
Fiedler, K. 2012. The host genera of ant-parasitic Lycaenidae butterflies: a review. Psyche, 110.Google Scholar
Fielding, A.H. and Bell, J.F. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24: 3849.Google Scholar
Forest, F. and Chase, M.W. 2009. Eudicots. In The timetree of life. Edited by S.B. Hedges and S. Kumar. Oxford University Press, New York, New York, United States of America. Pp. 169176.Google Scholar
Francisco, I.A. and Pimenta-Pinotti, M.H. 2000. Cyanogenic glycosides in plants. Brazilian Archives of Biology and Technology, 43: 487492.CrossRefGoogle Scholar
Fric, Z., Hula, V., Klimova, M., Zimmermann, K., and Konvicka, M. 2010. Dispersal of four fritillary butterflies within identical landscape. Ecological Research, 25: 543552.Google Scholar
Grenouillet, G., Buisson, L., Casajus, N., and Lek, S. 2011. Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography, 34: 917.Google Scholar
Hanski, I., Alho, J., and Moilanen, A. 2000. Estimating the parameters of survival and migration of individuals in metapopulations. Ecology, 81: 239251.Google Scholar
Heil, M., Delsinne, T., Hilpert, A., Schürkens, S., Andary, C., and Linsenmair, K.E., et al. 2002. Reduced chemical defence in ant-plants? A critical re-evaluation of a widely accepted hypothesis. Oikos, 99: 457468.Google Scholar
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., and Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25: 19651978.Google Scholar
Hula, V., Konvicka, M., Pavlicko, A., and Fric, Z. 2004. Marsh fritillary (Euphydryas aurinia) in the Czech Republic: monitoring, metapopulation structure, and conservation of an endangered butterfly. Entomologica Fennica, 15: 231241.CrossRefGoogle Scholar
Lechtenberg, M.A., and Nahrstedt, A. 1999. Cyanogenic glycosides. In Naturally occurring glycosides. Edited by R. Ikan. Wiley, Chichester, United Kingdom. Pp. 147191.Google Scholar
León-Cortés, J.L., Pérez-Espinoza, F., Marín, L., and Molina-Martínez, A. 2004. Complex habitat requirements and conservation needs of the only extant Baroniinae swallowtail butterfly. Animal Conservation, 7: 241250.CrossRefGoogle Scholar
Leraut, P. 2006. Moths of Europe. Volume 1, NAP Editions, Verrières-le-Buisson, France.Google Scholar
Ligue Suisse pour la Protection de la Nature. 1987. Les papillons de jour et leurs biotopes: espèces, dangers qui les menacent, protection. Volume 1, Ligue suisse pour la protection de la nature Neuchâtel, Neuchâtel, Switzerland.Google Scholar
Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R.K., and Thuiller, W. 2009. Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distribution, 15: 5969.CrossRefGoogle Scholar
Metcalfe, S.H., O’Hara, S.L., Caballero, M., and Davies, S.J. 2000. Records of late Pleistocene-Holocene climatic change in Mexico – a review. Quaternary Science Reviews, 19: 699721.CrossRefGoogle Scholar
Michel, F., Rebourg, C., Cosson, E., and Descimon, H. 2008. Molecular phylogeny of Parnassiinae butterflies (Lepidoptera: Papilionidae) based on the sequences of four mitochondrial DNA segments. Annales de la Société Entomologique de France, 44: 136.CrossRefGoogle Scholar
Mitter, K.T., Larsen, T.B., De Prins, W., De Prins, J., Collins, C., and Vande Weghe, G., et al. 2011. The butterfly subfamily Pseudopontiinae is not monobasic: marked genetic diversity and morphology reveal three new species of Pseudopontia (Lepidoptera: Pieridae). Systematic Entomology, 36: 139163.Google Scholar
Mueller-Dombois, D. and Ellenberg, H. 1974. Aims and methods of vegetation ecology. John Wiley & Sons, New York, New York, United States of America.Google Scholar
Nazari, V., Zakharov, E.V., and Sperling, F.A.H. 2007. Phylogeny, historical biogeography, and taxonomic ranking of Parnassiinae (Lepidoptera, Papilionidae) based on morphology and seven genes. Molecular Phylogenetics and Evolution, 42: 131156.Google Scholar
Nishida, R. 1995. Sequestration of plant secondary compounds by butterflies and moths. Chemoecology, 5/6: 127138.Google Scholar
Nishida, R. 2002. Sequestration of defensive substances from plants by Lepidoptera. Annual Review of Entomology, 47: 5792.Google Scholar
Odendaal, F.J., Turchin, P., and Stermitz, F.R. 1989. Influence of host-plant density and male harassment on the distribution of female Eyphydryas anicia (Nymphalidae). Oecologia, 78: 283288.Google Scholar
Peel, M.C., Finlayson, B.L., and McMahon, T.A. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11: 16331644.Google Scholar
Pérez, H. 1967. Estudio morfológico de los estados larvarios de Baronia brevicornis Salv. y su importancia. Folia Entomologica Mexicana, 15/16: 4344.Google Scholar
Pérez, H. 1972. Quetotaxia y morfología de la oruga de Baronia brevicornis Salv. (Lepidoptera Papilionidae Baroniinae). Anales del Instituto de Biología, Universidad Nacional Autónoma de México (Zoología), 40: 227244.Google Scholar
Pérez, H. 1979. Distribución geográfica y estructura poblacional de Baronia brevicornis Salv. (Lepidoptera, Papilionidae, Baroniinae) en la República Mexicana. Anales del Instituto de Biología, Universidad Nacional Autónoma de México (Zoología), 48: 151164.Google Scholar
Pérez, H. and Sánchez, R. 1986. Algunos aspectos demográficos de Baronia brevicornis Salv. (Lepidoptera: Papilionidae, Baroniinae) en dos localidades de México. Anales del Instituto de Biología, Universidad Nacional Autónoma de México (Zoología), 57: 191198.Google Scholar
Poulton, J. 1983. Cyanogenic compounds in plants and their toxic effects. In Plant and fungal toxins, handbook of natural toxins. Edited by R.F. Keeler, A.T. Tu, and M. Dekker. CRC Press, Boca Raton, Florida, United States of America. Pp. 117157.Google Scholar
R Development Core Team. 2012. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Ravenscroft, N.O. 1994. Environmental influences on mate location in male chequered skipper butterflies, Carterocephalus palaemon (Lepidoptera: Hesperiidae). Animal Behaviour, 47: 11791187.Google Scholar
Reed, R.D., and Sperling, F.A.H. 2006. Papilionidae. The Swallowtail Butterflies. Version 07 July 2006 [online]. Available from http://tolweb.org/tree?group=Papilionidae&contgroup=Papilionoidea [accessed 26 August 2013].Google Scholar
Ribeiro, D.B., Batista, R., Prado, P., Brown, K.S. Jr., and Freitas, A.V.L. 2012. The importance of small scales to the fruit-feeding butterfly assemblages in a fragmented landscape. Biodiversity Conservation, 21: 811827. doi:10.1007/s10531-011-0222-x.Google Scholar
Ricouart, F., Cereghino, R., Gers, C., Winterton, P., and Legal, L. 2013. Influence of fire prevention management strategies on the diversity of butterfly fauna in the eastern Pyrenees. Journal of Insect Conservation, 17: 95111.Google Scholar
Secretaria de Programación y Presupuesto. 1981. Atlas Nacional del Medio Fisico. Secretaria de Programación y Presupuesto, Mexio City, Mexico.Google Scholar
Seigler, D.S. 2003. Phytochemistry of Acacia-sensu lato. Biochemical Systematics and Ecology, 31: 845873.CrossRefGoogle Scholar
Seigler, D.S. and Ebinger, J.E. 1988. Acacia macracantha, A. pennatula, and A. cochliacantha (Fabaceae: Mimosoidae) species complexes in Mexico. Systematic Botany, 13: 715.Google Scholar
Shapiro, I.D. 1977. Interaction of population biology and mating behavior of the fiery skipper, Hylephila phylaeus (Hesperiidae). American Midland Naturalist, 98: 8594.Google Scholar
Simonsen, T.J., Zakharov, E.V., Djernaes, M., Cotton, A.M., Vane-Wright, R.I., and Sperling, F.A.H. 2011. Phylogenetics and divergence times of Papilioninae (Lepidoptera) with special reference to the enigmatic genera Teinopalpus and Meandrusa. Cladistics, 27: 113137.Google Scholar
Soberón, J. and Townsend-Peterson, A. 2005. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics, 2: 110.CrossRefGoogle Scholar
Secretaria de Programación y Presupuesto. 1981. Atlas Nacional del Medio Fisico. Secretaria de Programación y Presupuesto, Mexico City, Mexico.Google Scholar
Thomas, C.D., Bulman, C.R., and Robert, J. 2008. Where within a geographical range do species survive best? A matter of scale. Insect Conservation and Diversity, 1: 28.Google Scholar
Thuiller, W., Lafourcade, B., Engler, R., and Araújo, M.B. 2009. BIOMOD – a platform for ensemble forecasting of species distributions. Ecography, 32: 369373.Google Scholar
Torres, C., Osorio-Beristain, M., Mariano, N., and Legal, L. 2009. Sex-dependent seasonal activity patterns among two subfamilies of Nymphalidae (Lepidoptera) in the Mexican tropical dry forest. Annales de la Société Entomologique de France, 45: 265274.Google Scholar
Trejo-Vazquez, I. 1999. El clima de la selva baja caducifolia en México. Investigaciones Geográficas, 39: 4052.Google Scholar
Tufto, J., Lande, R., Ringsby, T.H., Engen, S., Sæther, B.E., and Walla, T.R., et al. 2012. Estimating Brownian motion dispersal rate, longevity and population density from spatially explicit mark-recapture data on tropical butterflies. Journal of Animal Ecology, 81: 756769.CrossRefGoogle ScholarPubMed
Van Ham, R.C.H.J. and Hart, H.T. 1998. Phylogenetic relationships in the Crassulaceae inferred from chloroplast DNA restriction-site variation. American Journal of Botany, 85: 123134.Google Scholar
Vázquez, L. and Pérez, H. 1962. Observaciones sobre la biología de Baronia brevicornis Salv. (Lepidoptera: Papilionidae-Baroniinae). Anales del Instituto de Biología de México, 32: 295311.Google Scholar
Vetter, J. 2000. Plant cyanogenic glycosides. Toxicon, 38: 1136.Google Scholar
Wahlberg, N. 2001. The phylogenetics and biochemistry of host-plant specialization in Melitaeine butterflies (Lepidoptera: Nymphalidae). Evolution, 55: 522537.Google Scholar
Warren, A.D., Davis, K.J., Grishin, N.V., Pelham, J.P., and Stangeland, E.M. 2010. Interactive listing of American butterflies [online]. Available from http://www.butterfliesofamerica.com/t/Baronia_brevicornis_a.htm [accessed 26 December 2013].Google Scholar
Wink, M. 2003. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry, 64: 319.CrossRefGoogle ScholarPubMed
Wink, M. and Mohamed, G.I.A. 2003. Evolution of chemical defense traits in the Leguminosae: mapping of distribution patterns of secondary metabolites on a molecular phylogeny inferred from nucleotide sequences of the rbcl gene. Biochemical Systematics and Ecology, 31: 897917.CrossRefGoogle Scholar
Zimmermann, K., Blazkova, P., Cizek, O., Fric, Z., Hula, V., Kepka, P., et al. 2011. Demography of adults of the marsh fritillary butterfly, Euphydryas aurinia (Lepidoptera: Nymphalidae) in the Czech Republic: patterns across sites and seasons. European Journal of Entomology, 108: 243254.Google Scholar