Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T05:47:01.208Z Has data issue: false hasContentIssue false

Douglas-fir cone gall midges respond to shape and infrared wavelength attributes of host tree branches

Published online by Cambridge University Press:  21 August 2012

Abstract

We tested the hypothesis that the conophagous Douglas-fir cone gall midge, Contarinia oregonensis Foote (Diptera: Cecidomyiidae), responds to infrared (IR) radiation and other electromagnetic wavelengths associated with cones of Douglas-fir, Pseudotsuga menziesii (Mirbel) Franco (Pinaceae). Early-season (March–April) thermographic images showed that cone orientation (upright, horizontal, pendant) and cone colour (green, purple, green/purple) did not affect apparent cone temperature (inferred from thermographic images). Tree components significantly differed in apparent temperature with foliage being coolest and branches warmest. There was no significant difference in the number of larvae in cones of different colours, and adult midges were equally attracted to traps painted green or purple, suggesting that cone colour does not affect oviposition decisions by gravid females. Adult midges were more strongly attracted to warm traps with IR frequency emissions higher than the background than to cold traps with IR frequency emissions lower than the background. They were also more strongly attracted to warm branch-shaped traps than to warm can-shaped traps. Collectively, these data indicate that the shape and IR attributes of Douglas-fir branches may serve as foraging cues for C. oregonensis.

Résumé

Nous vérifions l'hypothèse selon laquelle la cécidomyie du cône du sapin de Douglas, Contarinia oregonensis Foote (Diptera: Cecidomyiidae), une espèce conophage, réagit à la radiation infra-rouge (IR) et aux autres longueurs d'ondes électromagnétiques associées aux cônes du sapin de Douglas, Pseudotsuga menziesii (Mirbel) Franco (Pinaceae). Des images thermographiques au début de la saison (mars-avril) montrent que l'orientation du cône (dressé, horizontal ou pendant) et sa couleur (vert, violet, vert/violet) n'affectent pas la température apparente du cône (estimée d'après les images thermographiques). Les diverses composantes des arbres diffèrent significativement par leurs températures apparentes, car le feuillage est le plus frais et les branches les plus chaudes. Il n'y a pas de différence significative entre les nombres de larves dans les cônes de couleurs différentes et les cécidomyies adultes sont attirées autant par les pièges peints en vert qu'en violet, ce qui laisse croire que la couleur du cône n'affecte pas les décisions de ponte des femelles gravides. Les cécidomyies adultes sont plus fortement attirées par les pièges chauds dont les émissions de fréquence IR sont plus élevées que celles de l'arrière plan que par les pièges froids dont les émissions de fréquence IR sont plus basses que celles de l'arrière plan. Elles sont aussi plus fortement attirées par les pièges chauds en forme de branche que par les pièges chauds en forme de canette. Dans leur ensemble, ces résultats indiquent que la forme et les attributs IR des branches de sapins de Douglas peuvent servir de signaux de recherche chez C. oregonensis.

Type
Original Article
Copyright
Copyright © Entomological Society of Canada 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allard, R.A. Papaj, P.R. 1996. Learning of leaf shape by pipevine swallowtail butterfly: a test using artificial models. Journal of Insect Behaviour, 9: 961967.10.1007/BF02208982CrossRefGoogle Scholar
Baierlein, R. 1999. Thermal physics. Cambridge University Press, Cambridge, United Kingdom.10.1017/CBO9780511840227CrossRefGoogle Scholar
Blatt, S.E. Borden, J.H. 1999. Physical characteristics as potential host selection cues for Leptoglossus occidentalis (Heteroptera: Coreidae). Environmental Entomology, 28: 246254.CrossRefGoogle Scholar
Briscoe, A.D. Chittka, L. 2001. The evolution of colour vision in insects. Annual Review of Entomology, 46: 471510.CrossRefGoogle ScholarPubMed
Copes, D.L. 1972. Inheritance of megastrobili colours in Douglas fir (Pseudotsuga menziesii). Canadian Journal of Botany, 50: 20452048.10.1139/b72-261CrossRefGoogle Scholar
Evans, W.G. 1964. Infra-red receptors in Melanophila acuminata De Geer. Nature, 11: 202211.Google Scholar
Evans, W.G. 1966. Perception of infrared radiation from forest fires by Melanophila acuminata De Greer (Buprestidae: Coleoptera). Ecology, 47: 10611065.CrossRefGoogle Scholar
Gries, R., Khaskin, G., Gries, G., Bennett, R.G., King, G.G.S., Morewood, P., Slessor, K.N., Morewood, W.D. 2002. (Z,Z)-4,7-Tridecadien-(S)-2-yl acetate: Sex pheromone of Douglas-fir cone gall midge, Contarinia oregonensis . Journal of Chemical Ecology, 28: 22832297.CrossRefGoogle Scholar
Hedlin, A.F. 1961. The life history and habits of a midge Contarinia oregonensis Foote (Diptera: Cecidomyiidae) in Douglas-fir cones. The Canadian Entomologist, 93: 953967.CrossRefGoogle Scholar
Jiang, G., Li, Z., Nerry, F. 2006. Land surface emissivity retrieval from combined mid-infrared and thermal infrared data of MSG-SEVIRI. Remote Sensing of Environment, 105: 326355.CrossRefGoogle Scholar
Johnson, N.E. 1963. Time of attack of the Douglas-fir cone midge in relationship to cone development. Journal of Forestry, 61: 350355.Google Scholar
Kelber, A. 1994. Colour learning in the hawkmoth Macroglossum stellatarum . The Journal of Experimental Biology, 199: 11271131.CrossRefGoogle Scholar
Kelber, A., Balkenius, A., Warrant, E.J. 2002. Scotopic colour vision in nocturnal hawkmoths. Nature, 419: 922925.CrossRefGoogle ScholarPubMed
Krugman, S.L. Koerber, T.W. 1969. Effects of cone feeding by Leptoglossus occidentalis on ponderosa pine seed development. Forest Science, 16: 104111.Google Scholar
Miller, G.E. 1983. Biology, sampling and control of the Douglas-fir cone gall midge, Contarinia oregonensis Foote (Diptera: Cecidomyiidae) in Douglas-fir seed orchards in British Columbia. Ph.D. thesis. Simon Fraser University, Burnaby, British Columbia.CrossRefGoogle Scholar
Moericke, V., Prokopy, R.J., Berlocher, S., Bush, G.L. 1975. Visual stimuli eliciting attraction of Rhagoletis pomonella (Diptera: Tephritidae) flies to trees. Entomologia Experimentalis et Applicata, 18: 497507.CrossRefGoogle Scholar
Morewood, P., Morewood, D.W., Bennett, R.G., Gries, G. 2002. Potential for pheromone-baited traps to predict seed loss caused by Contarinia oregonensis (Diptera: Cecidomyiidae). The Canadian Entomologist, 134: 689697.CrossRefGoogle Scholar
Owens, E.D. Prokopy, R.J. 1986. Relationship between reflectance spectra of host plant-surfaces and visual detection of host fruit by Rhagoletis pomonella flies. Physiological Entomology, 11: 297307.CrossRefGoogle Scholar
Prokopy, R.J. 1968. Visual responses of apple maggot flies Rhagoletis pomonella (Diptera: Tephritidae) in orchard studies. Entomologia Experimentalis et Applicata, 11: 403422.CrossRefGoogle Scholar
Roitberg, B.D. 1985. Search dynamics in fruit-parasitic insects. Journal of Insect Physiology, 31: 865872.CrossRefGoogle Scholar
Roques, A., Sun, J.H., Zhang, X.-D., Turgeon, J.J., Xu, S.-B. 1995. Visual trapping of the Strobilomyia spp. (Dipt., Anthomyiidae) flies damaging Siberian larch cones in north-eastern China. Journal of Applied Entomology, 119: 659665.CrossRefGoogle Scholar
Schmitz, H. Bleckmann, H. 1997. Fine structure and physiology of the infrared receptor of beetles in the genus Melanophila (Coleoptera: Buprestidae). International Journal of Insect Morphology and Embryology, 26: 205215.CrossRefGoogle Scholar
Schmitz, H., Bleckmann, H., Mürtz, M. 1997. Infrared detection in a beetle. Nature, 386: 773774.CrossRefGoogle Scholar
Schmitz, H. Trenner, S. 2003. Electrophysiological characterization of the multipolar thermoreceptors in the “fire-beetle” Merimna atrata and comparison with the infrared sensilla of Melanophila acuminata (both Coleoptera: Buprestidae). Journal of Comparative Physiology A, 189: 715722.CrossRefGoogle ScholarPubMed
Shine, R. Sun, L.X. 2002. Arboreal ambush site selection by pit-vipers Gloydius shedaoensis . Animal Behaviour, 63: 565576.CrossRefGoogle Scholar
Strong, W.B., Bates, S.L., Stoehr, M.U. 2001. Feeding by Leptoglossus occidentalis Heidermann (Hemiptera: Coreidae) reduces seed set in lodgepole pine. The Canadian Entomologist, 133: 857865.CrossRefGoogle Scholar
Sturgeon, K.B. Mitton, J.B. 1980. Cone colour polymorphism associated with elevation in white fir, Abies concolor, in Southern Colorado. American Journal of Botany, 67: 10401045.10.1002/j.1537-2197.1980.tb07735.xCrossRefGoogle Scholar
Takács, S., Bottomley, H., Andreller, I., Zahradnik, T., Schwarz, J., Bennett, R., Strong, W., Gries, G. 2009. Infrared radiation from hot cones on cool conifers attracts seed-feeding insects. Proceedings of the Royal Society B, 276: 649655.CrossRefGoogle ScholarPubMed
Turgeon, J.J., Roques, A., De Groot, P. 1994. Insect fauna of coniferous seed cones: diversity, host plant interactions, and management. Annual Review of Entomology, 39: 179212.CrossRefGoogle Scholar
Vondran, T., Apel, K.H., Schmitz, H. 1995. The infrared receptor of Melanophila acuminata De Geer (Coleoptera: Buprestidae): ultrastructural study of a unique insect thermoreceptor and its possible descent from a hair mechanoreceptor. Tissue Cell, 27: 645658.CrossRefGoogle Scholar
Zahradnik, T.D. 2012. Exploitation of electromagnetic radiation as a foraging cue by conophagous insects. Ph.D. thesis. Simon Fraser University, Burnaby, British Columbia.Google Scholar
Zar, J.H. 1999. Biostatistical analysis, 4th ed. Prentice Hall, Upper Saddle River, New Jersey.Google Scholar