Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T08:41:54.492Z Has data issue: false hasContentIssue false

DO BALSAM TWIG APHIDS (HOMOPTERA: APHIDIDAE) LOWER TREE SUSCEPTIBILITY TO SPRUCE BUDWORM?

Published online by Cambridge University Press:  31 May 2012

William J. Mattson
Affiliation:
North Central Forest Experimental Station, U.S.D.A. Forest Service, Pesticide Research Center, and Department of Entomology, Michigan State University, East Lansing, Michigan, USA48824
Robert A. Haack
Affiliation:
North Central Forest Experimental Station, U.S.D.A. Forest Service, Pesticide Research Center, and Department of Entomology, Michigan State University, East Lansing, Michigan, USA48824
Robert K. Lawrence
Affiliation:
Department of Entomology, Michigan State University, East Lansing, Michigan, USA48824
Daniel A. Herms
Affiliation:
Department of Entomology, Michigan State University, East Lansing, Michigan, USA48824
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The balsam twig aphid, Mindarus abietinus Koch, infested nearly all trees in a range-wide provenance plantation of balsam fir, Abies balsamea (L.) Mill., in Michigan. Infestation levels were highest on eastern and lowest on western seed sources of fir. Large populations of the aphid were correlated with low survival and reduced developmental rates of the spruce budworm, Choristoneura fumiferana (Clemens). We propose that chronic, high susceptibility of trees to aphids could reduce concomitant susceptibility to budworm through direct (competition) and indirect (host and community-level) effects.

Résumé

Le puceron Mindarus abietinus Koch infestait presque tous les arbres dans une plantation du sapin baumier, Abies balsamea (L.) Mills., au Michigan; les arbres étaient de provenance largement répartie dans l’aire de distribution du sapin. Les niveaux d’infestation étaient maximum sur les provenances de l’est, et minimum sur celles de l’ouest. Les populations denses du puceron étaient correlées avec la baisse de survie et ralentissement du développement de la tordeuse des bourgeons de l’épinette, Choristoneura fumiferana (Clemens). Nous proposons que la susceptibilité chronique des arbres au puceron peut réduire la susceptibilité à la tordeuse par des mécanismes directs (compétition) et indirects (au niveau de la communauté).

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1989

References

Arthur, F.H., and Hain, F.P.. 1985. Development of wound tissue in the bark of Fraser fir and its relation to injury by the balsam woolly adelgid. J. ent. Sci. 20: 129135.Google Scholar
Bentley, B.L. 1977. Extrafloral nectaries and protection by pugnacious body guards. A. Rev. Ecol. Syst. 8: 407427.CrossRefGoogle Scholar
Buckley, R.C. 1987. Interactions involving plants, Homoptera, and ants. A. Rev. Ecol. Syst. 18: 111135.CrossRefGoogle Scholar
Campbell, R.W., Torgensen, T.R., and Srivastava, N.. 1983. A suggested role for predaceous birds and ants in the population dynamics of the western spruce budworm. Forest Sci. 29: 779790.Google Scholar
Carter, C.I., and Nichols, J.F.A.. 1985. Some resistance features of trees that influence the establishment and development of aphid colonies. Z. ang. Ent. 99: 6467.CrossRefGoogle Scholar
DeHayes, D.H. 1981. Genetic variation in susceptibility of Abies balsamea to Mindarus abietinus. Can. J. For. Res. 11: 3035.CrossRefGoogle Scholar
Downes, W.L., and Dahlem, G.A.. 1987. Keys to the evolution of Diptera: role of Homoptera. Environ. Ent. 16: 847854.CrossRefGoogle Scholar
Elliot, N.C., Simmons, G.A., and Sapio, F.J.. 1987. Honeydew and wildflowers as food for the parasites Glypta fumiferanae (Hymenoptera: Ichneumonidae) and Apantales fumiferanae (Hymenoptera: Braconidae). J. Kansas ent. Soc. 60: 2529.Google Scholar
Faeth, S.H. 1986. Indirect interactions between temporally-spaced herbivores mediated by the host plant. Ecology 67: 479484.CrossRefGoogle Scholar
Faeth, S.H. 1987. Community structure and folivorous insect outbreaks: the roles of vertical and horizontal interactions. pp. 135–171 in Barbosa, P., and Schultz, J. (Eds.), Insect Outbreaks. Academic Press, New York. 578 pp.Google Scholar
Harrison, S., and Karban, R.. 1986. Effects of an early-season folivorous moth on the success of a later-season species, mediated by changes in the quality of a shared host, Lupinus arboreus Sims. Oecologia 69: 354359.CrossRefGoogle ScholarPubMed
Jones, C.G. 1984. Microorganisms as mediators of plant exploitation by insect herbivores. pp. 53–99 in Price, P.W., Slobodchickoff, C.N., and Gaud, W.S. (Eds.), A New Ecology: Novel Approaches to Interactive Systems. John Wiley & Sons, New York. 515 pp.Google Scholar
Karban, R., Adamchak, R., and Schnathorst, W.C.. 1987. Induced resistance and interspecific competition between spider mites and a vascular wilt fungus. Science 235: 678680.CrossRefGoogle Scholar
Kuc, J. 1983. Induced systemic resistance in plants to diseases caused by fungi and bacteria. pp. 191–221 in Bailey, J.A., and Deverall, B.J. (Eds.), The Dynamics of Host Defense. Academic Press, New York. 233 pp.Google Scholar
Laine, K.J., and Niemela, P.. 1980. The influence of ants on the survival of mountain birches during an Oporina autumnata (Lep., Geometridae) outbreak. Oecologia 47: 3942.CrossRefGoogle Scholar
Larsson, S. 1985. Seasonal changes in the within crown distribution of the aphid Cinara pini on Scots pine. Oikos 45: 217222.CrossRefGoogle Scholar
Lieus, K. 1967. Influence of wildflowers on parasitism of tent caterpillars and codling moth. Can. Ent. 99: 444446.CrossRefGoogle Scholar
Martineau, R. 1984. Insects harmful to forest trees. Forestry Tech. Rep. 32. Minister of Supply and Services, Ottawa, Canada.Google Scholar
Mattson, W.J., Lawrence, R.K., Haack, R.A., Herms, D.A., and Charles, P.J.. 1988. Defensive strategies of woody plants against different insect feeding guilds in relation to plant ecological strategies and intimacy of association with insects. pp. 3–38 in Mattson, W.J., Levieux, J., and Bernard-Dagan, C. (Eds.), Mechanisms of Woody Plant Defenses Against Insects: Search for Pattern. Springer-Verlag, New York. 416 pp.CrossRefGoogle Scholar
Miller, J.D., Strongman, D., and Whitney, N.J.. 1985. Observations on fungi associated with spruce budworm infested balsam fir needles. Can. J. For. Res. 15: 896901.CrossRefGoogle Scholar
Miller, W.E. 1987. Spruce budworm (Lepidoptera: Tortricidae): role of adult imbibing in reproduction. Environ. Ent. 16: 12911295.CrossRefGoogle Scholar
Nettleton, W.A., and Hain, F.P.. 1982. The life history, foliage damage, and control of the balsam twig aphid, Mindarus abietinus (Homoptera: Aphididae) in Fraser fir Christmas tree plantations of western North Carolina. Can. Ent. 114: 155165.CrossRefGoogle Scholar
Neuvonen, S., Hanhimaki, S., Suomela, J., and Haukioja, E.. 1988. Early season damage to birch foliage affects the performance of a late season herbivore. J. Appl. Ent. 105: 182189.CrossRefGoogle Scholar
Puritch, G.S., and Nijholt, W.W.. 1974. Occurrence of juvabione-related compounds in grand fir and Pacific silver fir infested by the balsam wooly aphid. Can. J. Bot. 52: 585587.CrossRefGoogle Scholar
Renault, T. 1983. Balsam twig aphid and balsam gall midge—control update. Tech. Note 80. Maritimes For. Res. Centre, PO Box 4000, Fredericton N.B. E3B 5P7.Google Scholar
Schaupp, E. W. 1986. Azteca protection of Cecropia: ant occupation benefits juvenile trees. Oecologia 70: 379385.CrossRefGoogle Scholar
Strauss, S.V. 1987. Direct and indirect effects of host-plant fertilization on an insect community. Ecology 68: 16701678.CrossRefGoogle Scholar
Strongman, D.B., Strunz, G.M., Giguere, P., Yu, C.-M., and Calhoun, L.. 1988. Enniantins from Fusarium avenaceum isolated from balsam fir foliage and their toxicity to spruce budworm larvae, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). J. Chem. Ecol. 114: 753764.CrossRefGoogle Scholar
Tuomi, J., Niemela, P., Chapin, F.S. III, Bryant, J.P., and Siren, S.. 1988. Defensive responses of trees in relation to their carbon/nutrient balance. pp. 57–72 in Mattson, W.J., Levieux, J., and Bernard-Dagan, C. (Eds.), Mechanisms of Woody Plant Defenses Against Insects: Search for Pattern. Springer-Verlag, New York. 416 pp.Google Scholar
Way, M.J. 1963. Mutualism between ants and honeydew-producing Homoptera. A. Rev. Ent. 8: 307344.CrossRefGoogle Scholar