Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T06:52:07.789Z Has data issue: false hasContentIssue false

DNA barcodes reveal inconsistent species boundaries in Diplolepis rose gall wasps and their Periclistus inquilines (Hymenoptera: Cynipidae)

Published online by Cambridge University Press:  28 September 2019

Y. Miles Zhang*
Affiliation:
Entomology and Nematology Department, University of Florida, Gainesville, Florida, 32608, United States of America
Zoltán László
Affiliation:
Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, RO-400015, Romania
Chris Looney
Affiliation:
Washington State Department of Agriculture, Olympia, Washington, 98504, United States of America
Avar-Lehel Dénes
Affiliation:
Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, RO-400015, Romania
Robert H. Hanner
Affiliation:
Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
Joseph D. Shorthouse
Affiliation:
Department of Biology, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
*
1Corresponding author (e-mail: [email protected])

Abstract

Rose gall wasps, Diplolepis Geoffroy (Hymenoptera: Cynipidae), induce structurally distinct galls on wild roses (Rosa Linnaeus; Rosaceae), which provide gallers with food and shelter. These galls are attacked by a wide variety of micro-hymenopterans, including Periclistus Förster (Hymenoptera: Cynipidae), which act as inquilines. Both Diplolepis and Periclistus are difficult to distinguish based on adult morphology, instead the structural appearance of galls is often used to distinguish species. Using the mitochondrial gene cytochrome c oxidase subunit I, we tested the species boundaries and built phylogenies of both Diplolepis and Periclistus. The molecular results have largely supported the validity of species described in the literature, with notable exceptions in four species groups. Periclistus exhibits a divide between the Palaearctic and Nearctic clades, and ranges from specialists to generalists in terms of host specificity. While it is premature to enact any taxonomic changes without additional molecular markers, this incongruence between morphological and molecular data indicates these groups need taxonomic revision and gall morphology alone may be inadequate to delimit species.

Type
Systematics and Morphology
Copyright
© Entomological Society of Canada 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Cory Sheffield

References

Abe, Y., Melika, G., and Stone, G.N. 2007. The diversity and phylogeography of cynipid gallwasps (Hymenoptera: Cynipidae) of the Oriental and Eastern Palearctic regions, and their associated communities. Oriental Insects, 41: 169212.CrossRefGoogle Scholar
Ács, Z., Challis, R.J., Bihari, P., Blaxter, M., Hayward, A., Melika, G., et al. 2010. Phylogeny and DNA barcoding of inquiline oak gallwasps (Hymenoptera: Cynipidae) of the western Palaearctic. Molecular Phylogenetics and Evolution, 55: 210225.CrossRefGoogle ScholarPubMed
Antropov, A.V., Belokobylskij, S.A., Compton, S.G., Dlussky, G.M., Khalaim, A.I., Kolyada, V.A., et al. 2014. The wasps, bees and ants (Insecta: Vespida=Hymenoptera) from the insect limestone (Late Eocene) of the Isle of Wight, UK. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 104: 335446.CrossRefGoogle Scholar
Borowiec, M.L. 2016. AMAS: a fast tool for alignment manipulation and computing of summary statistics. PeerJ, 4: e1660. https://doi.org/10.7717/peerj.1660.CrossRefGoogle ScholarPubMed
Brooks, S.E. and Shorthouse, J.D. 1998. Developmental morphology of stem galls of Diplolepis nodulosa (Hymenoptera: Cynipidae) and those modified by the inquiline Periclistus pirata (Hymenoptera: Cynipidae) on Rosa blanda (Rosaceae). Canadian Journal of Botany, 76: 365381.CrossRefGoogle Scholar
Darriba, D., Taboada, G.L., Doallo, R., and Posada, D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9: 772772. https://doi.org/10.1038/nmeth.2109.CrossRefGoogle ScholarPubMed
Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32: 17921797. https://doi.org/10.1093/nar/gkh340.CrossRefGoogle ScholarPubMed
Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3: 294299.Google ScholarPubMed
Fougere-Danezan, M., Joly, S., Bruneau, A., Gao, X.F., and Zhang, L.B. 2015. Phylogeny and biogeography of wild roses with specific attention to polyploids. Annals of Botany, 115: 275291. https://doi.org/10.1093/aob/mcu245.CrossRefGoogle ScholarPubMed
Güçlü, S., Hayat, R., Shorthouse, J.D., and Tozlu, G. 2008. Gall-inducing wasps of the genus Diplolepis (Hymenoptera: Cynipidae) on shrub roses of Turkey. Proceedings of the Entomological Society of Washington, 110: 204217.CrossRefGoogle Scholar
Hajibabaei, M., Janzen, D.H., Burns, J.M., Hallwachs, W., and Hebert, P.D. 2006. DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences, 103: 968971.CrossRefGoogle ScholarPubMed
Hayward, A. and Stone, G.N. 2005. Oak gall wasp communities: evolution and ecology. Basic and Applied Ecology, 6: 435443.CrossRefGoogle Scholar
Hebert, P.D., Cywinska, A., and Ball, S.L. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B: Biological Sciences, 270: 313321.CrossRefGoogle ScholarPubMed
Hebert, P.D., Penton, E.H., Burns, J.M., Janzen, D.H., and Hallwachs, W. 2004. Ten species in one: DNA barcoding reveals cryptic species in the Neotropical skipper butterfly Astraptes fulgerator . Proceedings of the National Academy of Sciences, 101: 1481214817.CrossRefGoogle ScholarPubMed
Ivanova, N.V., deWaard, J.R., and Hebert, P.D. 2006. An inexpensive, automation-friendly protocol for recovering high-quality DNA. Molecular Ecology Resources, 6: 9981002.Google Scholar
Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16: 111120.CrossRefGoogle ScholarPubMed
Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35: 15471549.CrossRefGoogle ScholarPubMed
László, Z. and Tóthmérész, B. 2006. Inquiline effects on a multilocular gall community. Acta Zoologica Academiae Scientiarum Hungaricae, 52: 373383.Google Scholar
LeBlanc, D.A. and Lacroix, C.R. 2001. Developmental potential of galls induced by Diplolepis rosaefolii (Hymenoptera: Cynipidae) on the leaves of Rosa virginiana and the influence of Periclistus species on the Diplolepis rosaefolii galls. International Journal of Plant Sciences, 162: 2946.CrossRefGoogle Scholar
Liljeblad, J. and Ronquist, F. 1998. A phylogenetic analysis of higher-level gall wasp relationships (Hymenoptera: Cynipidae). Systematic Entomology, 23: 229252.CrossRefGoogle Scholar
Lima, J. 2012. Species richness and genome size diversity in hymenoptera with different developmental strategies: a DNA barcoding enabled study. Ph.D. dissertation. University of Guelph, Guelph, Ontario, Canada.Google Scholar
Linnen, C.R. and Farrell, B.D. 2007. Mitonuclear discordance is caused by rampant mitochondrial introgression in Neodiprion (Hymenoptera: Diprionidae) sawflies. Evolution, 61: 14171438.CrossRefGoogle ScholarPubMed
Nicholls, J.A., Challis, R.J., Mutun, S., and Stone, G.N. 2012. Mitochondrial barcodes are diagnostic of shared refugia but not species in hybridizing oak gallwasps. Molecular Ecology, 21: 40514062.CrossRefGoogle Scholar
Nicholls, J.A., Preuss, S., Hayward, A., Melika, G., Csoka, G., Nieves-Aldrey, J.-L., et al. 2010. Concordant phylogeography and cryptic speciation in two western Palaearctic oak gall parasitoid species complexes. Molecular Ecology, 19: 592609.CrossRefGoogle ScholarPubMed
Nicholls, J.A., Schönrogge, K., Preuss, S., and Stone, G.N. 2018. Partitioning of herbivore hosts across time and food plants promotes diversification in the Megastigmus dorsalis oak gall parasitoid complex. Ecology and Evolution, 8: 13001315. https://doi.org/10.1002/ece3.3712.CrossRefGoogle ScholarPubMed
Pénzes, Z., Tang, C.T., Stone, G.N., Nicholls, J.A., Schwéger, S., Bozsó, O.M., and Melika, G. 2018. Current status of the oak gallwasp (Hymenoptera: Cynipidae: Cynipini) fauna of the eastern Palaearctic and Oriental Regions. Zootaxa, 4433: 245289. https://doi.org/10.11646/zootaxa.4433.2.2.CrossRefGoogle ScholarPubMed
Plantard, O., Shorthouse, J.D., and Rasplus, J.-Y. 1998. Molecular phylogeny of the genus Diplolepis (Hymenoptera: Cynipidae). In The biology of gall-inducing arthropods. Edited by Csóka, G., Mattson, W.J., Stone, G.N., and Price, P.W.. General Technical Report NC-199. United States Department of Agriculture Forest Service, St. Paul, Minnesota, United States of America. Pp. 247260.Google Scholar
Puillandre, N., Lambert, A., Brouillet, S., and Achaz, G. 2012. ABGD, automatic barcode gap discovery for primary species delimitation. Molecular Ecology, 21: 18641877.CrossRefGoogle ScholarPubMed
Pujade-Villar, J., Wang, Y., Guo, R., and Chen, X. 2016. Revision on Palaearctic species of Periclistus Förster with description of a new species and its host plant gall (Hymenoptera, Cynipidae). Zookeys, 596: 6575. https://doi.org/10.3897/zookeys.596.5945.Google Scholar
Rambaut, A. 2012. FigTree v1. 4. Molecular evolution, phylogenetics and epidemiology Institute of Evolutionary Biology. University of Edinburgh, Edinburgh, United Kingdom.Google Scholar
Ratnasingham, S. and Hebert, P.D. 2007. BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes, 7: 355364.Google Scholar
Ritchie, A.J. 1984. A review of the higher classification of the inquiline gall wasps (Hymenoptera: Cynipidae) and a revision of the Nearctic species of Periclistus Förster. Ph.D. dissertation. Carleton University, Ottawa, Ontario, Canada.Google Scholar
Rokas, A., Melika, G., Abe, Y., Nieves-Aldrey, J.-L., Cook, J.M., and Stone, G.N. 2003. Lifecycle closure, lineage sorting, and hybridization revealed in a phylogenetic analysis of European oak gallwasps (Hymenoptera: Cynipidae: Cynipini) using mitochondrial sequence data. Molecular Phylogenetics and Evolution, 26: 3645.CrossRefGoogle Scholar
Ronquist, F., Nieves-Aldrey, J.L., Buffington, M.L., Liu, Z., Liljeblad, J., and Nylander, J.A. 2015. Phylogeny, evolution and classification of gall wasps: the plot thickens. Public Library of Science One, 10: e0123301. https://doi.org/10.1371/journal.pone.0123301.Google ScholarPubMed
Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61: 539542. https://doi.org/10.1093/sysbio/sys029.CrossRefGoogle ScholarPubMed
Shorthouse, J.D. 1973. Insect community associated with rose galls of Diplolepis polita (Cynipidae, Hymenoptera). Quaestiones Entomologicae, 9: 5598.Google Scholar
Shorthouse, J.D. 1980. Modification of galls of Diplolepis polita by the inquiline Periclistus pirata . Bulletin de la Société Botanique de France Actualités Botaniques, 127: 7984.CrossRefGoogle Scholar
Shorthouse, J.D. 1993. Adaptations of gall wasps of the genus Diplolepis (Hymenoptera: Cynipidae) and the role of gall anatomy in cynipid systematics. Memoirs of the Entomological Society of Canada, 125: 139163.CrossRefGoogle Scholar
Shorthouse, J.D. 2001. Galls induced by cynipid wasps of the genus Diplolepis (Cynipidae, Hymenoptera) on cultivated shrub roses in Canada. Acta Horticulturae, 547: 9192.CrossRefGoogle Scholar
Shorthouse, J.D. 2010. Galls induced by cynipid wasps of the genus Diplolepis (Hymenoptera: Cynipidae) on the roses of Canada’s grasslands. In Arthropods of the Canadian Grasslands. Edited by Shorthouse, J.D. and Floate, K.D.. Biological Survey of Canada, Ottawa, Ontario, Canada. Pp. 251279.Google Scholar
Shorthouse, J.D. and Brooks, S.E. 1998. Biology of the galler Diplolepis rosaefolii (Hymenoptera: Cynipidae), its associated component community, and host shift to the shrub rose Thérèse Bugnet. The Canadian Entomologist, 130: 357366.CrossRefGoogle Scholar
Shorthouse, J.D., Wool, D., and Raman, A. 2005. Gall-inducing insects–nature’s most sophisticated herbivores. Basic and Applied Ecology, 6: 407411.CrossRefGoogle Scholar
Stone, G.N., Schönrogge, K., Atkinson, R.J., Bellido, D., and Pujade-Villar, J. 2002. The population biology of oak gall wasps (Hymenoptera: Cynipidae). Annual Review of Entomology, 47: 633668.CrossRefGoogle Scholar
Wang, Y.-P., Guo, R., Liu, Z.-W., and Chen, X.-X. 2013. Taxonomic study of the genus Diplolepis Geoffroy (Hymenoptera, Cynipidae, Diplolepidini) in China, with descriptions of three new species. Acta Zootaxonomica Sinica, 38: 317327.Google Scholar
Wissemann, V. and Ritz, C. 2007. Evolutionary patterns and processes in the genus Rosa (Rosaceae) and their implications for host-parasite co-evolution. Plant Systematics and Evolution, 266: 7989.CrossRefGoogle Scholar
Zhang, Y.M., Gates, M.W., and Shorthouse, J.D. 2014. Testing species limits of Eurytomidae (Hymenoptera) associated with galls induced by Diplolepis (Hymenoptera: Cynipidae) in Canada using an integrative approach. The Canadian Entomologist, 146: 321334. https://doi.org/10.4039/tce.2013.70.CrossRefGoogle Scholar
Zhang, Y.M., Gates, M.W., and Shorthouse, J.D. 2017. Revision of Canadian Eurytomidae (Hymenoptera, Chalcidoidea) associated with galls induced by cynipid wasps of the genus Diplolepis Geoffroy (Hymenoptera, Cynipidae) and description of a new species. Journal of Hymenoptera Research, 61: 129. https://doi.org/10.3897/jhr.61.13466.CrossRefGoogle Scholar
Supplementary material: PDF

Zhang et al. supplementary material

Zhang et al. supplementary material 1
Download Zhang et al. supplementary material(PDF)
PDF 295.6 KB
Supplementary material: Image

Zhang et al. supplementary material

Zhang et al. supplementary material 2

Download Zhang et al. supplementary material(Image)
Image 523.9 KB
Supplementary material: Image

Zhang et al. supplementary material

Zhang et al. supplementary material 3

Download Zhang et al. supplementary material(Image)
Image 2.5 MB