Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T17:49:49.381Z Has data issue: false hasContentIssue false

Discrimination Between Parasitized and Unparasitized House Fly Pupae by Females of Nasonia vitripennis (Walk.) (Hymenoptera: Pteromalidae)

Published online by Cambridge University Press:  31 May 2012

H. G. Wylie
Affiliation:
Research Institute, Research Branch, Canada Department of Agriculture, Belleville, Ontario

Abstract

Females of Nasonia vitripennis (Walk.) (Hymenoptera: Pteromalidae) laid fewer eggs on parasitized than on unparasitized pupae of the house fly, Musca domestica L. Chemical and/or physical conditions of parasitized pupae are detected by the female’s ovipositor, causing this restraint. These conditions may in part result from the host’s death, caused by earlier parasitization, but other factors are also involved. These may include venom injected by the female parasite before she lays, and internal injury to the host resulting from insertion of the parasite’s ovipositor. The female parasite does not discriminate because of physical or chemical traces on the surface of parasitized puparia, of eggs or a surface wound on the pupa, or of absence of heart beat in the pupa.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrewartha, H. G., and Birch, L. C.. 1954. The distribution and abundance of animals. University of Chicago Press.Google Scholar
Crandell, H. A. 1939. The biology of Pachycrepoideus dubius Ashmead, (Hymenoptera), a pteromalid parasite of Piophila casei Linne (Diptera). Ann. ent. Soc. Amer. 32: 632654.CrossRefGoogle Scholar
De Bach, P. 1944. Environmental contamination by an insect parasite and the effect on host selection. Ann. ent. Soc. Amer. 37: 7074.CrossRefGoogle Scholar
Dethier, V. G. 1947. The response of hymenopterous parasites to chemical stimulation of the ovipositor. J. exp. Zool. 105: 199207.CrossRefGoogle ScholarPubMed
Evans, A. C. 1933. Comparative observations on the morphology and biology of some hymenopterous parasites of carrion-infesting Diptera. Bull. ent. Res. 24: 385405.CrossRefGoogle Scholar
Fulton, B. B. 1933. Notes on Habrocytus cerealellae, parasite of the Angoumois Grain Moth. Ann. ent. Soc. Amer. 37: 7074.Google Scholar
Lloyd, D. C. 1939. A study of some factors governing the choice of hosts and distribution of progeny by the chalcid Ooencyrtus kuvanae Howard. Phil. Trans. 229: 275322.Google Scholar
Lloyd, D. C. 1956. Studies of parasite oviposition behaviour. 1. Mastrus carpocapsae Cushman. (Hymenoptera: Ichneumonidae). Canad. Ent. 88: 8089.CrossRefGoogle Scholar
Narayanan, E. S., and Chaudhuri, R. P.. 1954. Studies on Stenobracon deesae (Cam.), a parasite of certain lepidopterous borers of graminaceous crops in India. Bull. ent. Res. 45: 647659.CrossRefGoogle Scholar
Noble, N. S. 1932. Studies of Habrocytus cerealellae (Ashmead), a pteromalid parasite of the Angoumois Grain Moth, Sitotroga cerealella (Olivier). Univ. Calif. Publ. Ent. 5: 311354.Google Scholar
Pinkus, H. 1913. The life history and habits of Spalangia muscidarum Richardson, a parasite of the stable fly. Psyche, Camb., Mass. 20: 148158.CrossRefGoogle Scholar
Rosenberg, H. T. 1934. The biology and distribution in France of the larval parasites of Cydia pomonella, L. Bull. ent. Res. 25: 201256.CrossRefGoogle Scholar
Salt, G. 1937. Experimental studies in insect parasitism. V. The sense used by Trichogramma to distinguish between parasitized and unparasitized hosts. Proc. roy. Soc. (B) 122: 5775.Google Scholar
Simmonds, F. J. 1943. The occurrence of superparasitism in Nemeritis canescens Grav. Rev. Canad. Zool. 2: 1558.Google Scholar
Simmonds, F. J. 1954. Host finding and selection by Spalangia drosophilae Ashm. Bull. ent. Res. 45: 527537.CrossRefGoogle Scholar
Simmonds, F. J. 1956. Superparasitism by Spalangia drosophilae Ashm. Bull. ent. Res. 47: 361376.CrossRefGoogle Scholar
Smith, C. E. 1935. Larra analis Fabricius, a parasite of the mole cricket Gryllotalpa hexa-dactyla Perty. Proc. ent. Soc. Wash. 37: 6582.Google Scholar
Thompson, W. R., and Parker, H. L.. 1927. The problem of host relations with special reference to entomophagous parasites. Parasitology 19: 134.CrossRefGoogle Scholar
Ullyett, G. C. 1936. Host selection by Microplectron fuscipennis, Zett. (Chalcididae, Hymenoptera). Proc. roy. Soc. (B) 120: 253291.Google Scholar
Ullyett, G. C. 1945. Distribution of progeny by Microbracon hebetor Sav. J. ent. Soc. S. Afr. 8: 123131.Google Scholar
Varley, G. C. 1941. On the search for hosts and the egg distribution of some chalcid parasites of the Knapweed Gallfly. Parasitology 33: 4766.CrossRefGoogle Scholar
Walker, M. G. 1937. A mathematical analysis of superparasitism by Collyria calcitrator Grav. Parasitology 29: 477503.CrossRefGoogle Scholar
Wigglesworth, V. B. 1950. The principles of insect physiology. Methuen & Co. Ltd., London.Google Scholar
Wilson, F. 1961. Adult reproductive behaviour in Asolcus basalis (Hymenoptera: Scelionidae). Austr. J. Zool. 9: 739751.CrossRefGoogle Scholar
Wylie, H. G. Effects of superparasitism on Nasonia vitripennis (Walk.) (Hymenoptera: Pteromalidae). Canad. Ent. (In preparation).Google Scholar