Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T16:01:46.320Z Has data issue: false hasContentIssue false

DEVELOPMENT OF TIPHODYTES GERRIPHAGUS (HYMENOPTERA: SCELIONIDAE) IN LIMNOPORUS DISSORTIS EGGS (HEMIPTERA: GERRIDAE)

Published online by Cambridge University Press:  31 May 2012

João M. Sousa
Affiliation:
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9

Abstract

Investigations of preimaginal development in Tiphodytes gerriphagus Marchal reveal two larval instars, based on counting exuviae and comparing mandible length during development within Limnoporus dissortis Drake & Harris eggs. Tiphodytes gerriphagus eggs are stalked, as is typical of scelionids, and are 282.6 ± 3.48 μm (mean ± SE) long. The chorion ruptures at 8–9 h postoviposition and releases a nonfeeding embryo into the host. Feeding begins at 18–20 h postoviposition, after the embryonic cuticle is shed and a fully differentiated and active larva is released. The first larval stage is teleaform and lasted up to 5 days postoviposition, and its total length increased from 183.6 ± 3.35 to 517.0 ± 14.67 μm. The second larval stage is hymenopteriform and lasted from 5 to 13 days postoviposition, and grew from 920.2 ± 24.65 to 1352.4 ± 11.89 μm total length before pupating. The pupal period lasted about 11 days, with male pupae being shorter and thinner than female pupae. These findings differ from previous descriptions of T. gerriphagus, and it is suspected that the first instar was mistakenly divided into two stadia. The sex ratio under laboratory conditions was female biased (22% males), and males were smaller but did not emerge significantly earlier than females.

Résumé

L’étude du développement préimaginai de Tiphodytes gerriphagus Marchal a révélé l’existence de deux stades larvaires, d’après le nombre d’exuvies et l’évolution de la longueur de la mandibule, dans les oeufs de Limnoporus dissortis Drake et Harris. Les oeufs de T. gerriphagus sont pédonculés, comme ils le sont généralement chez les Scelionidae, et mesurent 282,6 ± 3,48 μm (moyenne ± écart type) de longueur. Le chorion se fend 8–9 h après la ponte et libère à l’intérieur de l’hôte un embryon qui ne s’alimente pas. L’alimentation commence 18–20 h après la ponte, après le rejet de la cuticule embryonnaire et la libération d’une larve active, complètement différenciée. La premier stade peut durer jusqu’à 5 jours après la ponte et la larve est téléaforme et croît de 183,6 ± 3,35 μm de longueur totale à 517,0 ± 14,67 μm. La larve de deuxième stade est hyménoptériforme, vit de 5–13 jours après la ponte et passe de 920,2 ± 24,65 μm de longueur à 1352,4 ± 11,89 μm. La période nymphale dure environ 11 jours et les nymphes mâles sont plus courtes et plus minces que les nymphes femelles. Ces données diffèrent des descriptions antérieures de T. gerriphagus et il est possible que le premier stade ait été considéré à tort comme la succession de deux stades distincts. Le rapport mâles : femelles en laboratoire était fortement inférieur à 1 (22% de mâles) et les mâles étaient plus petits, mais leur émergence ne s’est pas produite significativement plus tôt que celle des femelles.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abacus Concepts Inc. 1992. Stateview, Berkley, California.Google Scholar
Bakkendorf, O. 1934. Biological investigations on some Danish Hymenopterous egg-parasites, especially in Homopterous and Heteropterous eggs, with taxonomic remarks and descriptions of new species. Entomologiske Meddelelser 19: 1134.Google Scholar
Barbosa, P. 1974. Manual of basic techniques in insect histology. Autumn, Amherst, MA.Google Scholar
Chopard, L. 1923. Les parasites de la mante religieuse. Annales de la Société Entomologique de France 91: 249–74.CrossRefGoogle Scholar
Clausen, C.P. 1940. Entomophagous insects. McGraw-Hill, New York.Google Scholar
Dahlan, A.N., Gordh, G. 1996. Development of Trichogramma australicum Girault (Hymenoptera: Trichogrammatidae) on Helicoverpa armigera (Hiibner) eggs (Lepidoptera: Noctuidae). Australian Journal of Entomology 35: 337–44.CrossRefGoogle Scholar
Fink, T.J. 1983. A further note on the use of the terms instar, stadium, and stage. Annals of the Entomological Society of America 76: 316–18.CrossRefGoogle Scholar
Gerling, D. 1972. The developmental biology of Telenomus remus Nixon (Hymenoptera: Scelionidae). Bulletin of Entomological Research 61: 385–88.CrossRefGoogle Scholar
Hamilton, W.D. 1967. Extraordinary sex ratios. Science (Washington, D.C.) 156: 477–88.CrossRefGoogle ScholarPubMed
Henriquez, N.P., Spence, J.R. 1993. Host location by the gerrid egg parasitoid Tiphodytes gerriphagus Marchal (Hymenoptera: Scelionidae). Journal of Insect Behavior 6: 455–66.CrossRefGoogle Scholar
Hoffmann, C.H. 1932. Hymenopterous parasites from the eggs of aquatic and semi-aquatic insects. Journal of the Kansas Entomological Society 2: 3337.Google Scholar
Johnson, N.F. 1992. Catalog of world species of Proctotrupoidea, exclusive of Platygasteridae. Memoirs of the American Entomological Institute 51: 1825.Google Scholar
Marchal, P. 1900. Sur un nouvel Hyménoptère aquatique, le Limnodytes gerriphagus N. Gen., N. Sp. Annales de la Société Entomologique de France 69: 171–76.Google Scholar
Martin, C.H. 1927. Biological studies of two hymenopterous parasites of aquatic insect eggs. Entomologica Americana New Series 8: 105–57.Google Scholar
Masner, L. 1972. The classification and interrelationships of Thoronini (Hymenoptera: Proctotrupoidea, Scelionidae). The Canadian Entomologist 104: 833–49.CrossRefGoogle Scholar
Matheson, R., Crosby, C.R. 1912. Aquatic Hymenoptera in America. Annals of the Entomological Society of America 5: 6571.CrossRefGoogle Scholar
McColloch, J.W., Yuasa, H. 1915. Further data on the life economy of the chinch bug parasite. Journal of Economic Entomology 8: 248–61.CrossRefGoogle Scholar
Navasero, R.C., Oatman, E.R. 1989. Life history, immature morphology and adult behavior of Telenomus solitus (Hymenoptera: Scelionidae). Entomophaga 34: 165–77.CrossRefGoogle Scholar
Norton, R., Sanders, F. 1985. Superior micro-needles for manipulating and dissecting soil invertebrates. Quaestiones Entomologicae 21: 673–74.Google Scholar
Nummelin, M., Spence, J.R., Vepsäläinen, K. 1988. Infection of gerrid eggs (Heteroptera: Genidae) by the parasitoid Tiphodytes gerriphagus Marchal (Hymenoptera: Scelionidae) in Finland. Annales Zoologici Fennici 25: 299302.Google Scholar
Pickford, R. 1964. Life history and bebaviour of Scelio calopteni Riley (Hymenoptera: Scelionidae), a para-site of grasshopper eggs. The Canadian Entomologist 96: 1167–72.CrossRefGoogle Scholar
Rothschild, G.H.L. 1970. Parasites of rice stemborers in Sarawak (Malaysian Borneo). Entomophaga 15: 2151.CrossRefGoogle Scholar
Safavi, M. 1968. Étude biologique et et écologique des hyménoptères parasites des oeufs des punaises des céréales. Entomophaga 13: 381495.Google Scholar
SAS Institute Inc. 1988. SAS/Stat User's Guide. Cary, North Carolina.Google Scholar
Schell, S.C. 1943. The biology of Hadronotus ajax Girault (Hymenoptera: Scelionidae), a parasite in the eggs of Squash-bug (Anasa tristis DeGeer). Annals of the Entomological Society of America 36: 625–35.CrossRefGoogle Scholar
Spence, J.R. 1986. Interactions between the scelionid egg parasitoid Tiphodytes gerriphagus (Hymenoptera) and its gerrid hosts (Heteroptera). Canadian Journal of Zoology 64: 2728–38.CrossRefGoogle Scholar
Strand, M.R., Meola, S.M., Vinson, S.B. 1986. Correlating pathological symptoms in Heliothis virescens eggs with development of the parasitoid Telenomus heliothidis. Journal of Insect Physiology 32: 389402.CrossRefGoogle Scholar
Ticehurst, M., Allen, D.C. 1973. Notes on the biology of Telenomus coelodasidis (Hymenoptera: Scelionidae) and its relationship to the saddled prominent, Heterocampa guttivitta (Lepidoptera: Notodontidae). The Canadian Entomologist 105: 1133–43.CrossRefGoogle Scholar
Volkoff, A., Daumal, J., Barry, P., Francois, M., Hawlitzky, N., Rossi, M.M. 1995. Development of Trichogramma cacoeciae Marchal (Hymenoptera: Trichogrammatidae): time table and evidence for a single larval instar. International Journal of Insect Morphology and Embryology 24: 459–46.CrossRefGoogle Scholar
Waage, J.K. 1982. Sib-mating and sex ratio strategies in scelionid wasps. Ecological Entomology 7: 103–12.CrossRefGoogle Scholar
Wigglesworth, V.B. 1973. The significance of “apolysis” in the molting of insects. Journal of Entomology 47: 141–49.Google Scholar