Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T07:10:58.541Z Has data issue: false hasContentIssue false

Cydia strobilella (Lepidoptera: Tortricidae): antennal and behavioral responses to host and nonhost volatiles

Published online by Cambridge University Press:  31 May 2012

C. Bédard
Affiliation:
Center for Environmental Biology, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
R. Gries
Affiliation:
Center for Environmental Biology, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
G. Gries*
Affiliation:
Center for Environmental Biology, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
R. Bennett
Affiliation:
Ministry of Forests, Tree Improvement Branch, Saanichton, British Columbia, Canada V8M 1W4
*
2Corresponding author (e-mail: [email protected]).

Abstract

Female spruce seed moths, Cydia strobilella (L.) (Lepidoptera: Tortricidae), oviposit on seed cones of most North American spruces (Picea spp.) (Pinaceae) at the time of pollination, and larvae feed on seeds in the maturing cones. We tested the hypothesis that host-seeking moths respond to volatiles from both host and nonhost trees. In coupled gas chromatographic – electroantennographic detection (GC–EAD) analyses of extracts of spruce seed cone volatiles, > 17 compounds elicited antennal responses from male and female C. strobilella. A blend of seven compounds, including (−)-α-pinene and (−)-β-pinene, α-longipinene and α-humulene, Z3-hexenol, methyl eugenol, and cymen-8-ol, was more attractive to female C. strobilella in laboratory bioassay experiments than the complete seed cone volatile blend, containing these compounds at equivalent quantities and ratios. In GC–EAD analyses of volatile extracts from nonhost angiosperm trees, EAD-activity was associated with compounds present in (almost) every volatile source, including trembling aspen, Populus tremuloides (Michx.) (Salicaceae), paper birch, Betula papyrifera (Marsh.) (Betulaceae), black Cottonwood, Populus balsamifera trichocarpa (Torr. and Gray) (Salicaceae), and bigleaf maple, Acer macrophyllum (Pursh.) (Aceraceae). In a field experiment in the interior of British Columbia, the antennally active nonhost aldehydes, alcohols, and (±)-conophthorin all reduced captures of male C. strobilella in pheromone-baited traps. Collectively, our data suggest that host selection by C. strobilella is mediated, in part, by semiochemicals from both host and nonhost trees.

Résumé

Les femelles de la tordeuse des graines de l'épinette, Cydia strobilella (L.) (Lepidoptera : Tortricidae), pondent leurs oeufs dans les cônes de la plupart des épinettes (Picea spp.) (Pinaceae) nord-américaines au moment de la pollinisation et les larves se nourrissent des graines contenues dans les cônes en voie de maturation. Nous avons vérifié l'hypothèse selon laquelle les tordeuses à la recherche d'un hôte réagissent aux produits volatiles des arbres hôtes, mais aussi des autres arbres. Nous avons procédé à des analyses de détection par chromatographie en phase gazeuse combinée à l'électroantennographie (GC–EAD) d'extraits de produits volatiles de cônes d'épinettes. Plus de 17 produits ont provoqué une réaction antennaire chez les mâles et les femelles de C. strobilella. Un mélange de sept produits, dont l'(−)-α-pinène, la (−)-β-pinène, l'α-longipinène, l'α-humulène, le Z3-hexénol, le méthyl eugénol et le cymén-8-ol, s'est avéré plus attirant pour la tordeuse au cours de tests en laboratoire que le mélange complet de produits volatiles des graines qui contiennent ces substances en quantités et proportions équivalentes. Au cours d'analyses par GC–EAD d'extraits de produits volatiles d'arbres angiospermes non hôtes, l'activité EAD était associée à des produits présents dans (presque) toutes les sources de produits volatiles, dont le peuplier faux-tremble, Populus tremuloides (Michx.) (Salicaceae), le bouleau blanc, Betula papyrifera (Marsh.) (Betulaceae), le peuplier de l'ouest, Populus balsamifera trichocarpa (Torr. et Gray) (Salicaceae) et l'érable à grandes feuilles, Acer macrophyllum (Pursh.) (Aceraceae). Au cours d'une expérience sur le terrain dans la région intérieure de la Colombie-Britannique, les aldéhydes, les alcools et la (±)-conophthorine d'arbres non hôtes, qui ont une action sur les antennes, ont tous eu pour effet de réduire le nombre de captures de mâles dans des pièges à phéromones. Dans l'ensemble, ces données indiquent que la sélection d'un hôte chez C. strobilella se fait en partie par l'intermédiaire de substances sémiochimiques émanant d'arbres hôtes et d'autres arbres.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arn, H., Städler, E., Rauscher, S. 1975. The electroantennographic detector – a selective and sensitive tool in the gas chromatographic analysis of insect pheromones. Zeitschrift fuer Naturforschung Section C Bio-sciences 30: 722–5CrossRefGoogle Scholar
Åhman, I., Wiersma, N., Lindström, M. 1988. Electroantennogram responses in Cydia strobilella (L.) (Lepidoptera, Tortricidae) to flower and twig odours of its host Picea abies (L.) Karst. Journal of Applied Entomology 105: 314–6CrossRefGoogle Scholar
Bédard, C. 1998. Chemical ecology of spruce seed moth, Cydia strobilella (L.) Lepidoptera: Tortricidae). Master of Pest Management thesis, Simon Fraser University, Burnaby, British Columbia.Google Scholar
Borden, J.H., Wilson, I.M., Gries, R., Chong, L.J., Pierce, H.D. Jr, Gries, G. 1998. Volatiles from the bark of trembling aspen, Populus tremuloides Michx. (Salicaceae) disrupt secondary attraction by the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). Chemoecology 8: 6975Google Scholar
Den Otter, C.J., De Cristofaro, A., Voskamp, K.E., Rotundo, G. 1996. Electrophysiological and behavioural responses of chestnut moths, Cydia fagiglandana and C. splendana (Lepidoptera: Tortricidae), to sex attractants and odours of host plants. Journal of Applied Entomology 120: 413–21CrossRefGoogle Scholar
Dickens, J.C., Jang, E.B., Light, D.M., Alford, A.R. 1990. Enhancement of insect pheromone responses by green leaf volatiles. Naturwissenschaften 77: 2931CrossRefGoogle Scholar
Grant, G.G., Fogal, W.H., West, R.J., Slessor, K.N., King, G.G.S., Miller, G.E. 1989. A sex attractant for the spruce seed moth, Cydia strobilella (L.) and the effect of lure dosage and trap height on capture of male moths. The Canadian Entomologist 121: 691–7CrossRefGoogle Scholar
Gray, T.G., Slessor, K.N., Shepherd, R.F., Grant, G.G., Manville, J.F. 1984. European pine shoot moth, Rhyacionia buoliana (Lepidoptera: Tortricidae): identification of additional pheromone components resulting in an improved lure. The Canadian Entomologist 116: 1525–32CrossRefGoogle Scholar
Harrewijn, P., Minks, A.K., Mollema, C. 1994/1995. Evolution of plant volatile production in insect–plant relationships. Chemoecology 5/6: 5573Google Scholar
Haynes, K.F., Baker, T.C. 1989. An analysis of anemotactic flight in female moths stimulated by host odor and comparison with the males' response to sex pheromone. Physiological Entomology 14: 279–89CrossRefGoogle Scholar
Hedlin, A.F. 1974. Cone and seed insects of British Columbia. Canada Forestry Service Information Report BC-X-90Google Scholar
Huber, D.P.W. 2001. Responses of five species of coniferophagous bark beetles (Coleoptera: Scolytidae) to angiosperm bark volatiles. PhD thesis, Simon Fraser University, Burnaby, British Columbia.CrossRefGoogle Scholar
Huber, D.P.W., Gries, R., Borden, J.H., Pierce, H.D. Jr. 1999. Two pheromones of coniferophagous bark beetles (Coleoptera: Scolytidae) found in bark of non-host angiosperms. Journal of Chemical Ecology 25: 805–16Google Scholar
Keen, F.P. 1958. Cone and seed insects of western forest trees. US Department of Agriculture Technical Bulletin 1169: 82115Google Scholar
Lance, D.R. 1983. Host-seeking behavior of the gypsy moth: the influence of polyphagy and highly apparent host plants. pp 201–24 in Ahmad, S. (Ed), Herbivorous insects: host-seeking behavior and mechanisms. New York: Academic PressCrossRefGoogle Scholar
Landolt, P.J. 1989. Attraction of the cabbage looper to host plant odor in the laboratory. Entomologia Experimentalis et Applicata 53: 117–24CrossRefGoogle Scholar
Light, D.M., Kamm, J.A., and Buttery, R.G. 1992. Electroantennogram response of alfalfa seed chalcid, Bruchophagus roddi (Hymenoptera: Eurytomidae) to host- and nonhost-plant volatiles. Journal of Chemical Ecology 18: 333–52CrossRefGoogle ScholarPubMed
Light, D.M., Knight, A.L., Henrick, C.A., Rajapaska, D., Lingren, W., Dickens, J.C., Reynolds, K.M., Buttery, R.G., Merill, G., Roitman, J., Campbell, B.C. 2001. A pear-derived kairomone with pheromonal potency that attracts male and female codling moths, Cydia pomonella (L.). Naturwissenschaften 88: 333–8CrossRefGoogle ScholarPubMed
Liu, S.H., Norris, D.M., Lyne, P. 1989. Volatiles from the foliage of soybean, Glycine max, and lima bean, Phaseolus lunatus: their behavioral effects on the insects Trichoplusia ni and Epilachna varivestis. Journal of Agricultural and Food Chemistry 37: 496501CrossRefGoogle Scholar
McNair, C., Gries, G., Gries, R. 2000. Cherry bark tortrix, Enarmonia formosana: olfactory recognition of and behavioral deterrence by nonhost angio- and gymnosperm volatiles. Journal of Chemical Ecology 26: 809–21CrossRefGoogle Scholar
Phelan, P.L., Baker, T.C. 1987. An attracticide for control of Amyelois transitella (Lepidoptera: Pyralidae) in almonds. Journal of Economic Entomology 80: 779–83CrossRefGoogle Scholar
Phelan, P.L., Roelofs, C.J., Youngman, R.R., Baker, T.C. 1991. Characterization of chemicals mediating ovipositional host-plant finding by Amyelosis transitella females. Journal of Chemical Ecology 17: 599613CrossRefGoogle ScholarPubMed
Raina, A.K. 1988. Selected factors influencing neurohormonal regulation of sex pheromone production in Heliothis species. Journal of Chemical Ecology 14: 2063–9CrossRefGoogle Scholar
SAS Institute Inc. 1988. SAS/STAT user's guide. Release 6.03 edition. Cary, North Carolina: SAS Institute IncGoogle Scholar
Takács, S., Gries, G., Gries, R. 2001. Communication ecology of webbing clothes moth: 2. Identification of semiochemicals mediating attraction of adults to larval habitat. Journal of Chemical Ecology 27: 1547–59CrossRefGoogle ScholarPubMed
Thiery, D., Visser, J.H. 1986. Masking of host plant odor in the olfactory orientation of the Colorado potato beetle. Entomologia Experimentalis et Applicata 41: 165–72CrossRefGoogle Scholar
Tingle, F.C., Heath, R.R., Mitchell, E.R. 1989. Flight response of Heliothis subflexa (GN) females (Lepidoptera: Noctuidae) to an attractant from groundcherry, Physalis angulata. Journal of Chemical Ecology 15: 221–31CrossRefGoogle Scholar
Tingle, F.C., Mitchell, E.R., Heath, R.R. 1990. Preferences of mated Heliothis virescens and H. subflexa (GN) females for host and nonhost volatiles in a flight tunnel. Journal of Chemical Ecology 16: 2889–98CrossRefGoogle Scholar
Zar, J.H. 1984. Biostatistical analysis. Englewood Cliffs, New Jersey: Prentice Hall IncGoogle Scholar