Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T08:13:52.284Z Has data issue: false hasContentIssue false

CONTROLLED-RELEASE SEX PHEROMONE LURES FOR MONITORING SPRUCE BUDWORM POPULATIONS

Published online by Cambridge University Press:  31 May 2012

C.J. Sanders
Affiliation:
Canadian Forestry Service, Great Lakes Forestry Centre, PO Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7
E.A. Meighen
Affiliation:
Department of Biochemistry, McGill University, 3655 Drummond Street, Montreal, Quebec, Canada H3G 1Y6
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Five formulations of the primary sex pheromone components of the spruce budworm (Choristoneura fumiferana [Clem.]) were evaluated as lures for monitoring spruce budworm populations: Biolures (Consep Membranes Inc.), Luretape plastic flakes (Hercon, Healthchem Corp.), polyethylene vials (International Pheromone Systems), hollow fibers (Albany International), and polyvinyl chloride (PVC) pellets. PVC pellets showed significant loss in attractiveness over the required 6-week period. Also, different batches of PVC pellets had very different rates of pheromone release and attraction; the oldest lures, stored for the longest period, were the most attractive. Luretape caught fewer moths than anticipated from the release-rate data and showed wide variation in catch among individual lures. Fibers were inconsistent. Biolures and polyethylene vials showed the lowest decline in attractiveness over time and the lowest variation in catch among individual lures, but their capture rates were higher than necessary.

Résumé

Cinq formulations des principaux constituants du bouquet des phéromones sexuelles de la tordeuse des bourgeons de l’épinette (Choristoneura fumiferana [Clem.]) ont été évaluées pour la surveillance des populations de cet insecte par piégeage. Il s’agissait des Biolures (Consep Membranes Inc.), des flocons de plastique Luretape (Hercon, Healthchem Corp.), de fioles de polyéthylène (International Pheromone Systems), de fibres creuses (Albany International) et de pastilles de polychlorure de vinyle (PVC). Sur la période requise de 6 semaines, il y a eu perte importante des propriétés attractives des pastilles de PVC. De plus, la vitesse de libération des phéromones et l’effet d’attraction variaient énormément d’un lot de pastilles à l’autre; les plus vieux appâts, entreposés durant les plus longues périodes, étaient les plus efficaces. Le Luretape a permis de capturer un nombre de tordeuses adultes inférieur à celui qui avait été prévu par les données sur la vitesse de libération, et le nombre de captures variaient largement d’un appât à l’autre. Le rendement des fibres a été inconstant. Les Biolures et les fioles de polyéthylène se sont révélés dotés de l’effet attractif qui s’affaiblissait le moins dans le temps, et la variation du nombre de captures d’un appât à l’autre était la moins grande, même si ce nombre était plus élevé qu’il le fallait.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1987

References

Alford, A.R., Silk, P.J., McLure, M., Gibson, G., and Fitzpatrick, J.. 1983. Behavioral effects of secondary components of the sex pheromone of the eastern spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Can. Ent. 115: 10531058.CrossRefGoogle Scholar
Baker, T.C., Meyer, W., and Roelofs, W.L.. 1981. Sex pheromone dosage and blend specificity of response by oriental fruit moth males. Ent. Exp. Appl. 30: 269279.CrossRefGoogle Scholar
Brown, M.B., and Forsythe, A.B.. 1974. Robust tests for the equality of variances. J. Am. Statist. Assoc. 69: 364367.CrossRefGoogle Scholar
Golub, M., Haworth, J., Alves, N., Phelan, S., Puck, P., and Weatherston, I.. 1983. Nomate Chokgard: The formulation of (Z)-11-hexadecenal in hollow fibres for use in the mating suppression of the artichoke moth. pp. 234237in Proc., 10th Int. Symp. on Controlled Release of Bioactive Materials, San Francisco.Google Scholar
Houseweart, M.W., Jennings, D.T., and Sanders, C.J.. 1981. Variables associated with pheromone traps for monitoring spruce budworm populations (Lepidoptera: Tortricidae). Can. Ent. 113: 527537.CrossRefGoogle Scholar
Kendall, D.M., Jennings, D.T., and Houseweart, M.W.. 1982. A large capacity pheromone trap for spruce budworm moths (Lepidoptera: Tortricidae). Can. Ent. 114: 461463.CrossRefGoogle Scholar
Meighen, E.A., Szittner, R.B., and Grant, G.G.. 1983. Determination of the release rate of aldehyde pheromones from insect lures by cold trapping and direct bioluminescence analysis. Anal. Biochem. 133: 179185.CrossRefGoogle ScholarPubMed
Morse, D., Szittner, R., Grant, G.G., and Meighen, E.A.. 1982. Rate of pheromone release by individual spruce budworm moths. J. Insect Physiol. 28: 863866.CrossRefGoogle Scholar
Ramaswamy, S.B., and Cardé, R.T.. 1982. Non-saturating traps and long-life attractant lures for monitoring spruce budworm moths. J. econ. Ent. 75: 126129.CrossRefGoogle Scholar
Ramaswamy, S.B., and Cardé, R.T.. 1984. Rate of release of spruce budworm pheromone from virgin females and synthetic lures. J. Chem. Ecol. 10: 17.CrossRefGoogle ScholarPubMed
Ramaswamy, S.B., Card, R.T.é, and Witter, J.A.. 1983. Relationships between catch in pheromone-baited traps and larval density of the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Can. Ent. 115: 14371443.CrossRefGoogle Scholar
Sanders, C.J. 1978. Evaluation of sex attractant traps for monitoring spruce budworm populations (Lepidoptera: Tortricidae). Can. Ent. 110: 4350.CrossRefGoogle Scholar
Sanders, C.J. 1981 a. Sex attractant traps: Their role in the management of spruce budworm. pp. 7592in Mitchell, E.R. (Ed.) Management of Insect Pests with Semio-chemicals: Concepts and Practice. Plenum Press, New York.CrossRefGoogle Scholar
Sanders, C.J. 1981 b. Release rates and attraction of PVC lures containing synthetic attractant of the spruce budworm, Choristoneura fumiferana. Can. Ent. 113: 103111.CrossRefGoogle Scholar
Sanders, C.J. 1984 a. Sex pheromone traps and lures for monitoring spruce budworm populations: the Ontario experience. In Monitoring Low Spruce Budworm Populations. USDA For. Serv., Gen. Tech. Rep. NE-88.Google Scholar
Sanders, C.J. 1984 b. Sex pheromones of the spruce budworm (Lepidoptera: Tortricidae): evidence for a missing component. Can. Ent. 116: 93100.CrossRefGoogle Scholar
Sanders, C.J. 1986. Evaluation of high-capacity, non-saturating sex pheromone traps for monitoring population densities of spruce budworm (Lepidoptera: Tortricidae). Can. Ent. 118: 611619.CrossRefGoogle Scholar
Sanders, C.J., and Weatherston, J.. 1976. Sex pheromone of the eastern spruce budworm. Optimum blend of trans- and cis-11-tetradecenal. Can. Ent. 108: 12851290.CrossRefGoogle Scholar
Silk, P.J., Tan, S.H., Wiesner, C.J., Ross, R.J., and Lonergan, G.C.. 1980. Sex pheromone chemistry of the eastern spruce budworm, Choristoneura fumiferana. Environ. Ent. 9: 640644.CrossRefGoogle Scholar
Weatherston, I., Miller, D., and Lavoie-Dornik, J.. 1985. Commercial hollow fibre pheromone formulations: the degrading effect of sunlight on Celcon fibres, causing increased release rates of the active ingredient. J. Chem. Ecol. 12: 16311644.CrossRefGoogle Scholar