Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T23:31:39.201Z Has data issue: false hasContentIssue false

Compatibility of Atheta coriaria with other biological control agents and reduced-risk insecticides used in greenhouse floriculture integrated pest management programs for fungus gnats

Published online by Cambridge University Press:  02 April 2012

S. Jandricic
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
C.D. Scott-Dupree*
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
A.B. Broadbent
Affiliation:
Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada N5V 4T3
C.R. Harris
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
G. Murphy
Affiliation:
Ontario Ministry of Agriculture, Food and Rural Affairs, Vineland, Ontario, Canada L0R 2E0
*
1Corresponding author (e-mail: [email protected]).

Abstract

Fungus gnats (FG) (Diptera: Sciaridae: Bradysia spp.) are economically important pests of greenhouse flowers. Larvae feed on root tissue and transmit a variety of phytopathogens. Atheta coriaria (Kraatz) (Coleoptera: Staphylinidae) is a new biological control agent (BCA) for FG. To support its successful use by the greenhouse industry, its compatibility with current integrated pest management (IPM) programs used in floriculture was assessed. This included investigations of prey preference, possible detrimental interactions with other soil-dwelling BCAs, and the toxicity to A. coriaria of registered and novel insecticides. Atheta coriaria showed little preference among eggs of different pest species or between pest eggs and eggs of the intraguild predator Hypoaspis aculeifer (Canestrini) (Acari: Mesostigmata: Laelapidae). It preferred FG 1st-instar larvae to larvae and pupae of other soil-dwelling pests. The entomopathogenic nematode Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) was compatible with A. coriaria, but H. aculeifer mites fed on A. coriaria larvae. Insect growth regulators with limited contact activity (e.g., diflubenzuron) were compatible with adult A. coriaria and had minimal effects on larvae compared with other insecticides. Atheta coriaria can be incorporated into an IPM program for FG if harsh insecticides are avoided, but interactions with predatory mites, as well as its effectiveness against other greenhouse pests when FG are present, require further investigation.

Résumé

Les sciarides (FG) (Diptera: Sciaridae: Bradysia spp.) sont des ravageurs d'importance économique des fleurs de serre. Les larves se nourrissent de tissus radiculaires et transmettent une variété de pathogènes. Atheta coriaria (Kraatz) (Coleoptera: Staphylinidae) est un nouvel agent de lutte biologique (BCA) contre les FC. Afin de favoriser l'utilisation efficace de cet agent par l'industrie de la culture en serres, nous évaluons sa compatibilité avec les programmes courants de lutte intégrée (IPM) en vigueur en floriculture. Cette évaluation comprend des études de préférence de proies, d'interactions potentiellement nuisibles avec d'autres BCA vivant dans le sol et de toxicité des insecticides enregistrés et nouveaux pour A. coriaria. Atheta coriaria montre peu de préférence pour les oeufs des différentes espèces de ravageurs et ne distingue pas entre les oeufs des ravageurs et ceux du prédateur de même guilde Hypoaspis aculeifer (Canestrini) (Acari: Mesostigmata: Laelapidae). Il préfère les larves de premier stade de FC aux larves et aux nymphes des autres ravageurs habitant le sol. Le nématode entomopathogène Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) est compatible avec A. coriaria, mais les acariens H. aculeifer se nourrissent des larves d'A. coriaria. Les régulateurs de croissance d'insectes avec peu d'activité de contact (par ex., le diflubenzuron) sont compatibles avec les adultes d'A. coriaria et ont un effet minimal sur les larves par comparaison aux autres insecticides. Atheta coriaria peut être intégré à un programme IPM pour les FC, si on évite les insecticides durs; il faut cependant étudier plus à fond ses interactions avec les acariens prédateurs, ainsi que son efficacité vis-à-vis des autres ravageurs des serres lorsqu'il y a des FC.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. 1925. A method for computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265267.CrossRefGoogle Scholar
Bilde, T., and Toft, S. 1994. Prey preference and egg production of the carabid beetle Agonum dorsale. Entomologia Experimentalis et Applicata, 73: 151156.CrossRefGoogle Scholar
Biobest Biological Systems. 2005. Products. Biological control: beneficial insects and mites. Available from http://www.biobest.be/ [accessed March 2005].Google Scholar
Bowley, S.R. 1999. A hitchhiker's guide to statistics in plant biology. Plants et al. Inc., Guelph, Ontario.Google Scholar
Broadbent, A.B., and Pree, D.J. 1997. Resistance to insecticides in populations of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) from greenhouses in the Niagara region of Ontario. The Canadian Entomologist, 129: 907913.CrossRefGoogle Scholar
Carney, V.A., Diamond, J.C., Murphy, G.D., and Marshall, D. 2002. The potential of Atheta coriaria Kraatz (Coleoptera: Staphylinidae) as a biological control agent for use in greenhouse crops. IOBC/wprs Bulletin, 25(1): 3740.Google Scholar
Clements, D.R., and Harmsen, R. 1992. Stigmaeid—phytoseiid interactions and the impact of natural enemy complexes on plant-inhabiting mites. Experimental and Applied Acarology, 14: 327341.CrossRefGoogle Scholar
Clements, D.R., and Harmsen, R. 1993. Prey preferences of adult and immature Zetzellia mali Ewing (Acari: Stigmaeidae) and Typhlodromus caudiglans Schuster (Acari: Phytoseiidae). The Canadian Entomologist, 125: 967969.CrossRefGoogle Scholar
Farvin, R.J., Rahe, J.E., and Mauza, B. 1988. Pythium spp. associated with crown rot of cucumbers in British Columbia greenhouses. Plant Disease, 72: 683687.Google Scholar
Gillespie, D.R., and Menzies, J.G. 1993. Fungus gnats vector Fusarium oxysporum f.sp. radicis lycopersici. Annals of Applied Biology, 123: 539544.CrossRefGoogle Scholar
Glazer, I., and Lewis, E.E. 2000. Bioassays for entomopathogenic nematodes. In Bioassays of entomopathogenic microbes and nematodes. Edited by Navon, A. and Ascher, K.R.S.. CABI Publishing, Wallingford, United Kingdom. pp. 229247.CrossRefGoogle Scholar
Goldberg, N.P., and Stanghellini, M.E. 1990. Ingestion—egestion and aerial transmission of Pythium aphanidermatum by shore flies (Ephydrinae: Scatella stagnalis). Phytopathology, 80: 12441246.CrossRefGoogle Scholar
Gordon, R., and Cornect, M. 1986. Toxicity of the insect growth regulator diflubenzuron to the rove beetle Aleochara bilineata, a parasitoid and predator of the cabbage maggot, Delia radicum. Entomologia Experimentalis et Applicata, 42: 179185.CrossRefGoogle Scholar
Harris, C.R., Manson, G.F., and Mazurek, J.H. 1962. Development of insecticidal resistance by soil insects in Canada. Journal of Economic Entomology, 55: 777780.CrossRefGoogle Scholar
Harris, M.A., Oetting, R.D., and Gardner, W.A. 1995. Use of entomopathogenic nematodes and a new monitoring technique for control of fungus gnats, Bradysia coprophila (Diptera: Sciaridae), in floriculture. Biological Control, 5: 412418.CrossRefGoogle Scholar
Harris, M.A., Gardner, W.A., and Oetting, R.D. 1996. A review of the scientific literature on fungus gnats (Diptera: Sciaridae) in the genus Bradysia. Journal of Entomological Science, 31: 252276.CrossRefGoogle Scholar
Jarvis, W.R., Shipp, J.L., and Gardiner, R.B. 1993. Transmission of Pythium aphanidermatum to greenhouse cucumber by the fungus gnat Bradysia impatiens (Diptera: Sciaridae). Annals of Applied Biology, 122: 2329.CrossRefGoogle Scholar
Jess, S., and Bingham, J.F.W. 2004. Biological control of sciarid and phorid pests of mushroom with predatory mites from the genus Hypoaspis (Acari: Hypoaspidae) and the entomopathogenic nematode Steinernema feltiae. Bulletin of Entomological Research, 94: 159167.CrossRefGoogle ScholarPubMed
Kalb, D.W., and Miller, R.L. 1986. Dispersal of Verticillium albo-atrum by the fungus gnat (Bradysia impatiens). Plant Disease, 70: 752753.CrossRefGoogle Scholar
Koppert Biological Systems. 2005. Pest control. Available from http://www.koppert.nl.cgi-bin/x0210.pl?lang=e&kpgr_srcID=5 [accessed March 2005].Google Scholar
Miller, K.V., and Williams, R.N. 1983. Biology and host preference of Atheta coriaria (Coleoptera: Staphylinidae), an egg predator of Nitidulidae and Muscidae. Annals of the Entomological Society of America, 76: 159161.CrossRefGoogle Scholar
Moyer, J.W., and Daub, M.E. 1994. Tomtato spotted wilt virus/Impatiens necrotic spot virus: where we've been and where we're going. In Proceedings for the Tenth Conference on Insects and Disease Management on Ornamentals, 19–21 February 1994. Society of American Florists, Dallas, Texas. pp. 8693.Google Scholar
Pietrantonio, P.V., and Benedict, J.H. 1999. Effect of new cotton insecticide chemistries, tebufenozide, spinosad and chlorfenapyr on Orius insidiosus and two Cotesia species. Southwestern Entomologist, 24: 2129.Google Scholar
Potter, C. 1952. An improved laboratory apparatus for applying direct sprays and surface films, with data on the electrostatic charge on atomized spray fluids. Annals of Applied Biology, 39: 128.CrossRefGoogle Scholar
Powell, J.R., and Webster, J.M. 2004. Interguild anatagonism between biological controls: impact of entomopathogenic nematode application on an aphid predator, Aphidoletes aphidimyza (Diptera: Cecidomyiidae). Biological Control, 30: 110118.CrossRefGoogle Scholar
Ragusa, S., and Zedan, M.A. 1988. Biology and predation of Hypoaspis aculeifer (Canestrini) (Parasitiformes, Dermanyssidae) on Rhizoglyphus echinopus (Fum. & Rob) (Acariformes, Acaridae). Redia, 71: 213225.Google Scholar
Rosensheim, J.A., Kaya, H.K., Ehler, L.E., Marois, J.J., and Jaffee, B.A. 1995. Intraguild predation among biological-control agents: theory and evidence. Biological Control, 5: 303335.CrossRefGoogle Scholar
Santos, M.A. 1991. Searching behavior and associational response of Zetzellia mali (Acarina: Stigmaeidae). Experimental and Applied Acarology, 11: 8187.CrossRefGoogle Scholar
SAS Institute Inc. 2001. SAS/STAT®. Version 8.1 [computer program]. SAS Institute Inc., Cary, North Carolina.Google Scholar
Seaton, K.A., Cook, D.F., and Hardie, D.C. 1997. The effectiveness of a range of insecticides against western flower thrips (Frankliniella occidentalis) (Thysanoptera: Thripidae) on cut flowers. Australian Journal of Agricultural Research, 48: 7817787.CrossRefGoogle Scholar
Tomlin, C.D.S. (Editor). 2003. The pesticide manual. 13th ed. British Crop Protection Council, Hampshire, United Kingdom.Google Scholar
Venzon, M., Janssen, A., and Sabelis, M.W. 2001. Prey preference, intraguild predation and population dynamics of an arthropod food web on plants. Experimental and Applied Acarology, 25: 785808.CrossRefGoogle ScholarPubMed
Walter, D.E., and Campbell, N.J.H. 2003. Exotic vs. endemic biocontrol agents: would the real Stratiolaelaps miles (Berlese) (Acari: Mesostigmata: Laelapidae) please stand up? Biological Control, 26: 253269.CrossRefGoogle Scholar
Wright, E.M., and Chambers, R.J. 1994. The biology of the predatory mite Hypoaspis miles (Acari: Laelapidae), a potential biological control agent of Bradysia paupera (Dipt.: Sciaridae). Entomophaga, 39: 225235.CrossRefGoogle Scholar