Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T17:37:00.041Z Has data issue: false hasContentIssue false

COMPARATIVE ECOLOGY OF TWO SPECIES OF HYDROPORUS (COLEOPTERA: DYTISCIDAE) IN A HIGH ARCTIC OASIS

Published online by Cambridge University Press:  31 May 2012

Adrian M.H. deBruyn*
Affiliation:
Biology Department, McGill University, 1205 Doctor Penfield Avenue, MontrCal, Quebec, Canada H3A 1B1
Richard A. Ring
Affiliation:
Biology Department, University of Victoria, Box 1700, Victoria, British Columbia, Canada V8W 2Y2
*
1Author to whom all correspondence should be addressed.

Abstract

At Alexandra Fiord, Ellesmere Island, the diving beetles Hydroporus morio Aubé and Hydroporus polaris Fall occur in a series of shallow ponds. Detailed habitat measurements of a temporary and a permanent pond revealed a more complex and extensive organic substrate and vegetation community, longer developmental time, and greater thermal budget in the permanent pond. Hydroporus polaris was most abundant in the temporary pond, but occurred in both; this species oviposited in the absence of macrophytic vegetation, completed larval development quickly, and pupated in the drying pond substrate, and adults dispersed in fall to moister overwintering sites. Hydroporus morio was restricted to the single permanent pond; this species took longer to complete larval development, pupated in wet moss, and overwintered as adults encased in ice on the vertical pond edge. We hypothesize that H. morio is excluded from temporary ponds in the arctic by its requirement for a relatively long development time. Alternatively, H. morio may require sheltered overwintering sites that temporary ponds do not offer.

Résumé

Dans le fjord d’Alexandra, dans l’île d’Ellesmere, les dytiques Hydroporus morio Aubé et H. polaris Fall habitent une série d’étangs peu profonds. Des mesures détaillées de l’habitat dans un étang permanent et dans un étang temporaire ont révélé que le substrat organique et la végétation sont plus complexes et plus développés dans l’étang permanent et que la durée du développement et le budget thermique y sont supérieurs également. Présent dans les deux types d’étangs, Hydroporus polaris est abondant surtout dans l’étang temporaire; l’espèce pond en l’absence de macrophytes, la larve se développe rapidement, la nymphose se fait dans le substrat de l’étang en voie de dessication et les adultes se dispersent à l’automne pour gagner des sites plus humides pour passer l’hiver. Hydroporus morio n’a été trouvé que dans un seul étang permanent; son développement larvaire est plus long, l’espèce fait sa nymphose dans les mousses humides et les adultes passent l’hiver enfouis dans la glace sur la bordure verticale de l’étang. Nous croyons qu’H. morio est exclu des étangs temporaires arctiques à cause de la durée relativement longue de son développement. De plus, H. morio peut nécessiter la présence de sites protégés pour passer l’hiver, ce que n’offrent pas les étangs temporaires.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alarie, Y. 1991. Description of larvae of 17 Nearctic species of Hydroporus Clairville (Coleoptera: Dytiscidae: Hydroporinae) with an analysis of their phylogenetic relationships. The Canadian Entomologist 123: 627704CrossRefGoogle Scholar
Bliss, L.C. 1977. Truelove Lowland, Devon Island, Canada: a High Arctic Ecosystem. Edmonton, Alta.: University of Alberta PressGoogle Scholar
Böcher, J. 1988. The Coleoptera of Greenland. Bioscience 26: 1521Google Scholar
Braasch, D. 1989. Zur Überwinterung der Imagines der Dytiscidae (Insecta, Coleoptera). Faunistische Abhandlungen 16: 141–46Google Scholar
Corbet, P.S. 1972. The microclimate of arctic plants and animals, on land and in fresh water. Acta Arctica 18: 743Google Scholar
Cuppen, J.G.M. 1983. On the habitats of three species of the genus Hygrotus Stephens (Coleoptera: Dytiscidae). Freshwater Biology 13: 579–88CrossRefGoogle Scholar
Cuppen, J.G.M. 1986. The influence of acidity and chlorinity on the distribution of Hydroporus species (Coleoptera, Dytiscidae) in the Netherlands. Entomologica Basiliensia 11: 327–36Google Scholar
Danks, H.V. 1971. Spring and early summer temperatures in a shallow arctic pond. Arctic 24: 113–23CrossRefGoogle Scholar
Danks, H.V. 1981. Arctic Arthropods: a Review of Systematics and Ecology with Particular Reference to the North American Fauna. Ottawa, Ont.: Entomological Society of CanadaGoogle Scholar
Danks, H.V. 1987. Insect plant interactions in arctic regions. Revue d'entomologie du Québec 31: 5275Google Scholar
Danks, H.V. 1990. Arctic insects: instructive diversity. pp. 444–70 in Harington, C.R. (Ed.), Canada's Missing Dimension: Science and History in the Canadian Arctic Islands. Ottawa, Ont.: Canadian Museum of NatureGoogle Scholar
deBruyn, A.M.H. 1994, Pond habitats and life cycles of diving beetles (Coleoptera: Dytiscidae: Hydroporus spp.) in a high arctic oasis. M.Sc. thesis, University of Victoria, Victoria, British ColumbiaGoogle Scholar
Downes, J.A. 1962. What is an arctic insect? The Canadian Entomologist 94: 143–62CrossRefGoogle Scholar
Downes, J.A. 1964. Arctic insects and their environment. The Canadian Entomologist 96: 279307CrossRefGoogle Scholar
Driver, E.A. 1977. Chironomid communities in small prairie ponds: some characteristics and controls. Freshwater Biology 7: 121–33CrossRefGoogle Scholar
Eyre, M.D., Ball, S.G., Foster, G.N. 1986. An initial classification of the habitats of aquatic Coleoptera in north-east England. Journal of Applied Ecology 23: 841–52CrossRefGoogle Scholar
Eyre, M.D., Foster, G.N., Foster, A.P. 1990. Factors affecting the distribution of water beetle assemblages in drains of eastern England. Journal of Applied Entomology 109: 217–25CrossRefGoogle Scholar
Galewski, K. 1971. A study on the morphobiotic adaptations of European species of the Dytiscidae (Coleoptera). Polskie Pismo Entomologiczne 41: 488702Google Scholar
Gordon, R. 1969. A revision of the niger-tenebrosus group of Hydroporus (Coleoptera: Dytiscidae) in North America. Ph.D. thesis, North Dakota State University of Agriculture and Applied Science, Fargo, North DakotaGoogle Scholar
Hobbie, J.E. 1973. Arctic limnology: a review. pp. 127–68 in Britton, M.E. (Ed.), Alaskan Arctic Tundra. Arctic Institute of North America Technical Paper 25Google Scholar
Hobbie, J.E. 1980. Introduction and site description. pp. 1950in Hobbie, J.E. (Ed.), Limnology of Tundra Ponds, Barrow, Alaska. Stroudsburg, Pa.: Dowden, Hutchinson and Ross, Inc.CrossRefGoogle Scholar
Jeppesen, P.C. 1986. Dytiscid beetles in Greenland, with description of the three larval stages of Hydroporus melanocephalus (Marsham, 1802). Entomologica Basiliensia 11: 6779Google Scholar
Juliano, S.A. 1991. Changes in structure and composition of an assemblage of Hydroporus species (Coleoptera: Dytiscidae) along a pH gradient. Freshwater Biology 25: 367–78CrossRefGoogle Scholar
Kalff, J. 1968. Some physical and chemical characteristics of arctic fresh waters in Alaska and northwestern Canada. Journal of the Fisheries Research Board of Canada 25: 2575–87CrossRefGoogle Scholar
Kukal, O. 1994. A partial list of terrestrial arthropods from the Alexandra Fiord lowland. pp. 257258in Svoboda, J. and Freedman, B. (Eds.), Ecology of a Polar Oasis, Alexandra Fiord, Ellesmere Island, N.W.T., Canada. North York, Ont.: Captus PressGoogle Scholar
Larson, D.J. 1975. The predaceous water beetles (Coleoptera: Dytiscidae) of Alberta: systematics, natural history and distribution. Quaestiones Entomologicae 11: 245498Google Scholar
Larson, D.J. 1985. Structure in temperate predaceous diving beetle communities (Coleoptera: Dytiscidae). Holarctic Ecology 8: 1832Google Scholar
Larson, D.J. 1987. Aquatic Coleoptera of peatlands and marshes in Canada. Memoirs of the Entomological Society of Canada 140: 99132CrossRefGoogle Scholar
Larson, D.J., House, N.L. 1990. Insect communities of Newfoundland bog pools with emphasis on the Odonata. The Canadian Entomologist 122: 469501CrossRefGoogle Scholar
Lawton, J.H., Hassell, M.P. 1984. Interspecific competition in insects. pp. 451–95 in Huffaker, C.B. and Rabb, R.L. (Eds.), Ecological Entomology. New York, N.Y.: John Wiley and SonsGoogle Scholar
Millar, J.B. 1973. Vegetation changes in shallow marsh wetlands under improving moisture regime. Canadian Journal of Botany 51: 1443–57CrossRefGoogle Scholar
Miller, M.C., Prentki, R.T., Barsdate, R.J. 1973. Physics. pp. 5175in Hobbie, J.E. (Ed.), Limnology of Tundra Ponds, Barrow, Alaska. Stroudsburg, Pa.: Dowden, Hutchinson and Ross, Inc.Google Scholar
Moore, M.V., Lee, R.E. Jr. 1991. Surviving the big chill: overwintering strategies of aquatic and terrestrial insects. American Entomologist 1991 (Summer): 111–18Google Scholar
Nilsson, A.N. 1986 a. Life cycles and habitats of the northern European Agabini (Coleoptera, Dytiscidae). Entomologica Basiliensia 11: 391417Google Scholar
Nilsson, A.N. 1986 b. Community structure in the Dytiscidae (Coleoptera) of a northern Swedish seasonal pond. Annales Zoologica Fennici 23: 3947Google Scholar
Nilsson, A.N., Svensson, B.W. 1994. Dytiscid predators and culicid prey in two boreal snowmelt pools differing in temperature and duration. Annales Zoologici Fennici 31: 365–76Google Scholar
Oliver, D.R., Corbet, P.S. 1966. Aquatic Habitats in a High Arctic Locality: The Hazen Camp Study Area, Ellesmere Island, N.W.T. Ottawa: Directorate of Physical Research (Geophysics) Hazen, Defence Research Board of Canada, Department of National DefenceGoogle Scholar
Prentki, R.T., Miller, M.C., Barsdate, R.J., Alexander, V., Kelley, J., Coyne, P. 1980. Chemistry. pp. 76178in Hobbie, J.E. (Ed.), Limnology of Tundra Ponds, Barrow, Alaska. Stroudsburg, Pa.: Dowden, Hutchinson and Ross, Inc.Google Scholar
Ring, R.A. 1981. The physiology and biochemistry of cold tolerance in arctic insects. Journal of Thermal Biology 6: 219–29CrossRefGoogle Scholar
Stanley, D.W. 1976. Productivity of epipelic algae in tundra ponds and a lake near Barrow, Alaska. Ecology 57: 1015–24CrossRefGoogle Scholar
Svoboda, J., Freedman, B. (Eds.). 1994. Ecology of a Polar Oasis, Alexandra Fiord, Ellesmere Island, N.W.T., Canada. North York, Ont.: Captus PressGoogle Scholar
Vannote, R.L., Sweeny, B.W. 1980. Geographical analysis of thermal equilibria: a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. American Naturalist 115: 667–95CrossRefGoogle Scholar
Watson, D.G., Hanson, W.C., Davis, J.J., Cushing, C.E. 1966. Limnology of tundra ponds and Ogoturuk Creek. pp. 415–35 in Wilimovsky, N.J. and Wolfe, J.N. (Eds.), Environments of the Cape Thompson Region, Alaska. Oak Ridge, Tenn.: U.S. Atomic Energy CommissionGoogle Scholar
Wiggins, G.B., Mackay, R.J., Smith, I.M. 1980. Evolutionary and ecological strategies of animals in annual temporary pools. Archiv fur Hydrobiologie Supplement 58: 97206Google Scholar
Williams, D.D. 1991. Life history traits of aquatic arthropods in springs. pp. 6387in Williams, D.D. and Danks, H.V. (Eds.), Arthropods of Springs, with Particular Reference to Canada. Memoirs of the Entomological Society of Canada 155Google Scholar