Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T05:10:25.883Z Has data issue: false hasContentIssue false

CHIRONOMID (DIPTERA) BIOCOENOSES IN SCANDINAVIAN GLACIER BROOKS

Published online by Cambridge University Press:  31 May 2012

August Wilhelm Steffan
Affiliation:
Zoologiska Institutionen, Ekologiska Avdelningen, Lunds Universitet, Lund, Sverige, and Institut für Allgemeine Zoologie der Johannes Gutenberg-Universität, B.R. Deutschland

Abstract

Glacier brooks in Northern Scandinavia have been investigated for the occurrence of chironomid larvae and pupae. In the uppermost zone of glacier brooks with a very narrow temperature amplitude, Diamesa lindrothi is the most abundant species. In a lower zone with a wide diurnal temperature amplitude during summer months, the simuliid Prosimulium macropyga is more abundant, along with other species of Diamesa. Lacking any primary organic production, the diptera larvae living here feed on particles drifted up on the glacier surface, conserved there and released into the glacier brook by the melting of the ice. The larvae of Diamesa lindrothi have developed adjustments to obviate the strong water current and the instability of the benthic substratum: The mature larvae spin nets over small stone cavities where they live, and thus prevent the pupal stage from being washed downstream. The Diamesa associations in glacier brooks have to be regarded as distinct freshwater biocoenoses. They have to be considered as belonging to the biocoenosis type kryon, and the brooks themselves according to the biotope type kryal. They differ from the krenal and rhithral biotope types by both abiotic and biotic peculiarities, and from the equivalent biocoenosis types by their characteristic life forms and animal associations.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bretschko, G. 1969. Zur Hydrobiologie zentralalpiner Gletscherabflüsse. Verh. Dt. Zool. Ges. Innsbruck 1968: 741750.Google Scholar
Illies, J. 1961. Versuch einer allgemeinen biozönotischen Gliederung der Fliessgewässer. Int. Rev. Hydrobiol. Hydrogr. 46(2): 205213.CrossRefGoogle Scholar
Illies, J. and Botosaneanu, L.. 1963. Problèmes et méthodes de la classification et de la zonation écologique des eaux courantes, considérées surtout du point de vue faunistique. Int. Ver. Limnol. Mitteil. 12: 157.Google Scholar
Sæther, O. A. 1968. Chironomids of the Finse Area, Norway, with special reference to their distribution in a glacier brook. Arch. Hydrobiol. 64(4): 426483.Google Scholar
Steinböck, O. 1934. Die Tierwelt der Gletschergewässer. Ztschr. Dt. Österr. Alpenver. 65: 263275.Google Scholar
Steinböck, O. 1938. Arbeiten über die Limnologie der Hochgebirgsgewässer. Bericht. Int. Rev. Hydrobiol. Hydrogr. 37: 467509.CrossRefGoogle Scholar
Steffan, A. W. 1965. Zur Statik und Dynamik im Ökosystem der Fliessgewässer und zu den Möglichkeiten ihrer Klassifizierung, pp. 65110. In Tüxen, R. (Ed.), Biosoziologie. Junk, Den Haag.Google Scholar
Thienemann, A. 1941. Lappländische Chironomiden und ihre Wohngewässer. Arch. Hydrobiol. Suppl. 17. 253 S.S.Google Scholar