Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T02:23:30.494Z Has data issue: false hasContentIssue false

CHANGES IN FEEDING HABITS OF SELECTED NONTARGET AQUATIC INSECTS IN RESPONSE TO LIVE AND BACILLUS THURINGIENSIS VAR. ISRAELENSIS DE BARJAC-KILLED BLACK FLY LARVAE (DIPTERA: SIMULIIDAE)

Published online by Cambridge University Press:  31 May 2012

Richard W. Merritt
Affiliation:
Department of Entomology, Michigan State University, East Lansing, Michigan, USA
Mark S. Wipfli
Affiliation:
Department of Entomology, Michigan State University, East Lansing, Michigan, USA
R.S. Wotton
Affiliation:
Department of Biology, Medawar Building, University College London, Gower Street, London WCIE 6BT, Great Britain

Abstract

The effects of Bacillus thuringiensis var. israelensis de Barjac (B.t.i.) on the feeding habits of two black fly predators, Nigronia serricornis (Say) and Acroneuria lycorias (Newman), and a detritivore, Prostoia completa (Walker), were examined. We assessed whether B.t.i.-killed and hot water-killed black fly larvae were less or more desirable to these consumers than live larvae. Nigronia larvae showed no significant differences in predation on larvae within the three categories. Acroneuria nymphs consumed more live than dead prey. Experiments with the detritivore, Prostoia, showed that they preferred dead black fly larvae to live ones. Bacillus thuringiensis var. israelensis treatment may have little direct effect on nontarget organisms, but these studies indicate that there still may be consequences for predators and detritivores when a viable population of larval black flies is transformed into dead organic matter.

Résumé

Les effets de Bacillus thuringiensis var. israelensis de Barjac (B.t.i.) sur les habitudes à se nourrir de deux prédateurs de mouches noires, Nigronia serricornis (Say) et Acroneuria lycorias (Newman), et d’un insecte détritivore, Prostoia completa (Walker), ont été étudiés. Nous avons évalué l’importance de l’attirance de larves de mouches noires tuées par B.t.i. ou par l’eau chaude à comparer à des larves vivantes pour ces consommateurs. Les larves de Nigronia n’ont démontré aucune différence significative en ce qui concerne la prédation sur les larves des trois catégories. Les stades immatures d’Acroneuria se sont nourris davantage de larves vivantes que de larves mortes. Les épreuves en utilisant l’insecte détritivore, Prostoia, ont signalé qu’il a préféré des larves mortes aux larves vivantes de mouches noires. L’utilisation de Bacillus thuringiensis var. israelensis pourrait avoir peu d’effet direct aux organismes non-cibles, mais ces études ont indiqué que des conséquences pourraient exister en ce qui concerne les prédateurs et les détritivores quand une population viable de larves de mouches noires est convertie en matière organique morte.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allan, J.D., Flecker, A.S., and McClintock, N.L.. 1987 a. Prey preference of stoneflies; sedentary vs. mobile prey. Oikos 49: 323331.CrossRefGoogle Scholar
Allan, J.D., Flecker, A.S., and McClintock, N.L.. 1987 b. Prey size selection by carnivorous stoneflies. Limnol. Oceanogr. 32: 864872.CrossRefGoogle Scholar
Allan, J.D., and Flecker, A.S.. 1988. Prey preference in stoneflies: a comparative analysis of prey vulnerability. Oecologia (Berl.) 76: 496503.CrossRefGoogle ScholarPubMed
Aly, C., and Mulla, M.S.. 1987. Effect of two microbial insecticides on aquatic predators of mosquitoes. J. appl. Ent. 103: 113118.CrossRefGoogle Scholar
Aronson, A.I., Beckman, W., and Dunn, P.. 1986. Bacillus thuringiensis and related insect pathogens. Microbiol. Rev. 50: 124.CrossRefGoogle ScholarPubMed
Car, M., and de Moor, F.C.. 1984. The response of Vaal River drift and benthos to Simulium (Diptera: Nematocera) control using Bacillus thuringiensis var. israelensis (H-14). Onderstepoort J. vet. Res. 51: 155160.Google ScholarPubMed
de Moor, F.C., and Car, M.. 1986. A field evaluation of Bacillus thuringiensis var. israelensis as a biological control agent for Simulium chutteri (Diptera: Nematocera) in the middle Orange River. Onderstepoort J. vet. Res. 53: 4350.Google ScholarPubMed
Fuller, R.L., and DeStaffan, P.A.. 1988. A laboratory study of the vulnerability of prey to predation by three aquatic insects. Can. J. Zool. 66: 875878.CrossRefGoogle Scholar
Gaugler, R., and Finney, J.. 1982. A review of Bacillus thuringiensis var. israelensis (serotype 14) as a biological control agent of black flies (Simuliidae). pp. 1–17 in Molloy, D. (Ed.), Biological Control of Black Flies (Diptera: Simuliidae) with Bacillus thuringiensis var. israelensis (serotype 14), A Review with Recommendations for Laboratory and Field Protocol. Misc. Publ. ent. Soc. Am. 12. 30 pp.Google Scholar
Holling, C.S. 1966. The functional response of invertebrate predators to prey density. Mem. ent. Soc. Can. 48: 186.Google Scholar
Lacey, L.A., and Mulla, M.S.. 1990. Safety of Bacillus thuringiensis var. israelensis and Bacillus sphaericus to non-target organisms in the aquatic environment, Chap. 12. pp. 169–188 in Laird, M., Lacey, L.A., and Davidson, E.W. (Eds.), Safety of Microbial Insecticides. C.R.C. Press, Boca Raton, FL. 259 pp.Google Scholar
Malmqvist, B., and Sjostrom, P.. 1984. The microdistribution of some lotic insect predators in relation to their prey and to abiotic factors. Freshwat. Biol. 14: 649656.CrossRefGoogle Scholar
Merritt, R.W., and Cummins, K.W. (Eds.). 1984. An Introduction to the Aquatic Insects of North America, 2nd ed. Kendall/Hunt, Dubuque, IA. 722 pp.Google Scholar
Merritt, R.W., Walker, E.D., Wilzbach, M.A., Cummins, K.W., and Morgan, W.T.. 1989. A broad evaluation of B.t.i. for black fly (Diptera: Simuliidae) control in a Michigan river: Efficacy, carry and non-target effects on invertebrates and fish. J. Am. Mosq. Contr. Assoc. 5: 397415.Google Scholar
Molles, M.C. Jr., and Pietruszka, R.D.. 1987. Prey selection by a stonefly: The influence of hunger and prey size. Oecologia (Berl.) 72: 473478.CrossRefGoogle ScholarPubMed
Molloy, D.P. 1990. Progress in the biological control of black flies with Bacillus thuringiensis israelensis, with emphasis on temperate climates. pp. 161–186 in de Barjac, H., and Sutherland, D.J. (Eds.), Bacterial Control of Mosquitoes and Black Flies: Biochemistry, Genetics, and Applications of Bacillus thuringiensis israelensis and Bacillus sphaericus. Rutgers University Press, New Brunswick, NJ. 352 pp.Google Scholar
Peckarsky, B.L. 1984. Predator–prey interactions among aquatic insects. pp. 196–254 in Resh, V.H., and Rosenberg, D.M. (Eds.), The Ecology of Aquatic Insects. Praeger, New York, NY. 625 pp.Google Scholar
Peckarsky, B.L., and Penton, M.A.. 1985. Is predaceous stonefly behavior affected by competition? Ecology 66: 17181728.CrossRefGoogle Scholar
Shapas, T.J., and Hilsenhoff, W.L.. 1976. Feeding habits of Wisconsin's predominant lotic Plecoptera, Ephemeroptera, and Trichoptera. Great Lakes Ent. 9: 175188.Google Scholar