Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T11:28:18.116Z Has data issue: false hasContentIssue false

Carabid beetle communities after 18 years of conservation tillage and crop rotation in a cool humid climate

Published online by Cambridge University Press:  04 July 2012

Abstract

Agricultural practices affect the biotic and abiotic conditions that determine food and shelter for carabid beetles (Coleoptera: Carabidae). We hypothesised that carabid communities would respond differently to 18 years of contrasted cropping practices in cereal-based rotations. We measured the effects of tillage (MP: moldboard plough; CP: chisel plough; NT: no-till) and previous crop sequence (cereal monoculture versus cereal–forage/cereal–oilseed rotation) on carabid beetle activity density, diversity, and community structure in corn (Zea mays Linnaeus, Poaceae) at La Pocatière, Québec, Canada. Carabid beetles were sampled monthly from May to September 2006, using pitfall traps. Although 19 carabid species were observed, assemblages were dominated by Harpalus rufipes (De Geer), particularly in the second half of the season. Multivariate analyses indicated a strong affinity of carabid species for the NT treatment throughout the season. Crop sequence and tillage had no effect on diversity (Shannon's H′ ≤ 1.3) and evenness of carabid assemblage, but species richness and activity density were greater in NT than in tilled systems. Peak activity density of dominant species occurred at different times during the season, generally in accordance with preferred breeding season. Many species had greater activity density in NT than in tilled treatments. Because of their granivorous feeding habit, carabid populations such as that of H. rufipes could be an important asset to NT, given the limited weed management options available for this system.

Résumé

Les pratiques agricoles affectent les conditions biotiques et abiotiques qui vont définir l'habitat et les sources de nourriture pour les carabes (Coleoptera: Carabidae). Nous suggérons que 18 années de pratiques agricoles contrastées auront affecté les communautés de carabes dans des rotations à base de céréales. Nous avons mesuré les effets du travail du sol (CV: charrue à versoirs; CH: charrue scarificatrice; SD: semis direct) et de la succession des cultures (monoculture céréalière versus rotation céréale–fourrage/céréale–oléagineuses) sur l'activité densité, la diversité et la structure des communautés de carabes dans une culture de maïs (Zea mays Linnaeus; Poaceae) à La Pocatière, Québec, Canada. Les carabes ont été échantillonnés à partir de pièges fosses, de mai à septembre 2006. Bien que 19 espèces aient été observées pendant la saison, les communautés ont été dominées par Harpalus rufipes (De Geer), surtout en deuxième moitié de saison. Les analyses multivariées ont démontré une grande affinité des carabes pour le traitement en SD tout au cours de la saison. La succession des cultures et le travail du sol n'ont pas eu d'effet sur la diversité (indice de Shannon H′ ≤ 1.3) et sur l’équitabilité des communautés de carabes, mais le nombre d'espèces (richesse) et l'activité densité ont été plus élevés dans le SD que dans les parcelles labourées (CV, CH). Les pics d'activité densité des espèces se sont produits à différents moments au cours de la saison et, généralement, ont été en accord avec la saison de reproduction propre à chaque espèce. L'activité densité de plusieurs espèces a été plus élevée dans le SD que dans les parcelles labourées. En raison de leur comportement granivore, la présence de populations de carabes telles celles d’H. rufipes pourraient être avantageuse pour les systèmes en SD, étant donné les choix limités au niveau du désherbage.

Type
Original Article
Copyright
Copyright © Entomological Society of Canada 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R.L. 2008. Diversity and no-till: keys for pest management in the U.S. Great Plains. Weed Science, 56: 141145.CrossRefGoogle Scholar
Baguette, M. Hance, T. 1997. Carabid beetles and agricultural practices: influence of soil plowing. Entomological Research in Organic Agriculture, 15: 185190.Google Scholar
Booij, C.H.J. Noorlander, J. 1992. Farming systems and insect predators. Agriculture, Ecosystems and Environment, 40: 125135.CrossRefGoogle Scholar
Bourassa, S., Cárcamo, H.A., Spence, J.R., Blackshaw, R.E., Floate, K. 2010. Effects of crop rotation and genetically modified herbicide-tolerant corn on ground beetle diversity, community structure, and relative abundance. The Canadian Entomologist, 142: 143159.CrossRefGoogle Scholar
Brust, G.E. 1990. Direct and indirect effects of four herbicides on the activity of carabid beetles (Coleoptera: Carabidae). Pesticide Science, 30: 309320.CrossRefGoogle Scholar
Buddle, C.M., Beguin, J., Bolduc, É., et al. 2005. The importance and use of taxon sampling curves for comparative biodiversity research with forest arthropod assemblages. The Canadian Entomologist, 137: 120127.CrossRefGoogle Scholar
Cárcamo, H.A. 1995. Effect of tillage on ground beetles (Coleoptera: Carabidae): a farm-scale study in Central Alberta. The Canadian Entomologist, 127: 631639.CrossRefGoogle Scholar
Cárcamo, H.A., Niemalä, J.K., Spence, J.R. 1995. Farming and ground beetles: effects of agronomic practices on populations and community structure. The Canadian Entomologist, 127: 123140.CrossRefGoogle Scholar
Çilgi, T. Jepson, P.C. 1992. The use of tracers to estimate the exposure of beneficial insects to direct pesticide spraying in cereals. Annals of Applied Biology, 121: 239247.CrossRefGoogle Scholar
Clark, M.S., Luna, J.M., Stone, N.D., Youngman, R.R. 1994. Generalist predator consumption of armyworm (Lepidoptera: Noctuidae) and effect of predator removal on damage in no-till corn. Environmental Entomology, 23: 617622.CrossRefGoogle Scholar
Curt, E. Truelove, B. 1986. The rhizosphere. Springer, Berlin; Springer-Verlag, New York. 280 pp.Google Scholar
Davis, A.S., Dixon, P.M., Liebman, M. 2003. Cropping system effects on giant foxtail (Setaria faberi) demography: II. Retrospective perturbation analysis. Weed Science, 51: 930939.CrossRefGoogle Scholar
Davis, A.S. Liebman, M. 2003. Cropping system effects on giant foxtail (Setaria faberi) demography: I. Green manure and tillage timing. Weed Science, 51: 919929.CrossRefGoogle Scholar
Desbiens, P. 2010. Évaluation des populations de carabidés (Coleoptera: Carabidae) dans les haies brise-vent intégrant des arbustes porteurs de produits forestiers non ligneux. M.Sc. thesis. Faculté des études supérieures de l'Université Laval, Québec, Canada. 71pp.Google Scholar
Ecological Stratification Working Group. 1994. Ecoregions of Canada. Scale 1: 7,500,000. Agriculture and Agri-Food Canada, Research Branch, Centre for Land and Biological Resources Research, and Environment Canada, State of the Environment Directorate, Ottawa.Google Scholar
Ellsbury, M.M., Powell, J.E., Forcella, F., Woodson, W.D., Clay, S., Riedell, W.E. 1998. Diversity and dominant species of ground beetle assemblages (Coleoptera: Carabidae) in crop rotation and chemical input systems for the Northern Great Plains. Ecology and Population Biology, 91: 619625.Google Scholar
Eriksen-Hamel, N.S., Speratti, A.B., Whalen, J.K., Légère, A., Madramootoo, C.A. 2009. Earthworm populations and growth rates related to long-term crop residue and tillage management. Soil & Tillage Research, 104: 311316.CrossRefGoogle Scholar
Gallandt, E.R., Molloy, T., Lynch, R.P., Drummond, F.A. 2005. Effect of cover-cropping systems on invertebrate seed predation. Weed Science, 53: 6976.CrossRefGoogle Scholar
Gotelli, N.J. Colwell, R.K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4: 379391.CrossRefGoogle Scholar
Gotelli, N.J. Entsminger, G.L. 2001. EcoSim: null models software for ecology. Version 7.0. Acquired Intelligence Inc. & Kesey-Bear [online]. Available from http://garyentsminger.com/ecosim/index.htm [accessed 17 February 2012].Google Scholar
Gullett, D.W. Skinner, W.R. 1992. L’état du climat au Canada: les variations de la température au Canada, 1895–1991. Service de l'environnement atmosphérique. Environment Canada, Ottawa.Google Scholar
Hance, T.H., Grégoire-Wibo, C., Lebrun, P.H. 1990. Agriculture and ground-beetles populations. The consequence of crop types and surrounding habitats on activity and species composition. Pedobiologia, 34: 337346.CrossRefGoogle Scholar
Hartke, A., Drummond, F.A., Liebman, M. 1998. Seed feeding, seed caching, and burrowing behaviors of Harpalus rufipes de Geer larvae (Coleoptera: Carabidae) in the Maine potato agroecosystem. Biological Control, 13: 91100.CrossRefGoogle Scholar
Harvey, J.A., van der Putten, W.H., Turin, H., Wagenaar, R., Bezemer, T.M. 2008. Effects of change in plant species richness and community traits on carabid assemblages and feeding guilds. Agriculture, Ecosystems and Environment, 127: 100105.CrossRefGoogle Scholar
Hatten, T.D., Bosque-Pérez, N.A., Johnson-Maynard, J., Eigenbrode, S.D. 2007. Tillage differentially affects the catch rate of pitfall traps for three species of carabid beetles. Entomologia Experimentalis et Applicata, 124: 177187.CrossRefGoogle Scholar
Holland, J.M. Luff, M.L. 2000. The effects of agricultural practices on Carabidae in temperate agroecosystems. Integrated Pest Management Review, 5: 109129.CrossRefGoogle Scholar
House, G.J. 1989. Soil arthropods from weed and crop roots of an agroecosystem in a wheat–soybean–corn rotation: impact of tillage and herbicides. Agriculture, Ecosystems and Environment, 25: 233244.CrossRefGoogle Scholar
Huusela-Vesitola, E. 1996. Effects of pesticide use and cultivation techniques on ground beetles (Coleoptera: Carabidae) in cereal fields. Annales Zoologici Fennici, 33: 193206.Google Scholar
Kladivko, E.J. 2001. Tillage systems and soil ecology. Soil & Tillage Research, 61: 6176.CrossRefGoogle Scholar
Kromp, B. 1999. Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agriculture, Ecosystems and Environment, 74: 187228.CrossRefGoogle Scholar
Kujawa, K., Sobczyk, D., Kajak, A. 2006. Dispersal of Harpalus rufipes (de Geer) (Carabidae) between shelterbelt and cereal field. Polish Journal of Ecology, 54: 243252.Google Scholar
Larochelle, A. 1990. The food of carabid beetles (Coleoptera: Carabidae), including Cicindelinae. Fabreries Supplement, 5: 1132.Google Scholar
Larochelle, A. Larivière, M.-C. 2003. A natural history of the ground-beetles (Coleoptera: Carabidae) of America north of Mexico. Pensoft, Sofia, Bulgaria.Google Scholar
Légère, A., Stevenson, F.C., Benoit, D.L. 2011a. The selective memory of weed seedbanks after 18 years of conservation tillage. Weed Science, 59: 98106.CrossRefGoogle Scholar
Légère, A., Stevenson, F.C., Vanasse, A. 2011b. A corn test crop confirms beneficial effects of crop rotation in three tillage systems. Canadian Journal of Plant Science, 91: 943946.CrossRefGoogle Scholar
Lindroth, C.H. 1961–1969. The ground-beetles (Carabidae, excl. Cicindelinae) of Canada and Alaska. Opuscula Entomologica (Lund), Supplementum 20 (1961), 24 (1963), 29 (1966), 33 (1968), 34 and 35 (1969), I-XLVIII + 1192 pp.Google Scholar
Lövei, G.L. Sunderland, K.D. 1996. Ecology and behaviour of ground beetles (Coleoptera: Carabidae). Annual Review of Entomolology, 41: 231256.CrossRefGoogle ScholarPubMed
Lundgren, J.G. Rosentrater, K.A. 2007. The strength of seeds and their destruction by granivorous insects. Arthropod–Plant Interactions, 1: 9399.CrossRefGoogle Scholar
Magurran, A.E. 2004. Measuring biological diversity. Blackwell, Malden, Massachusetts.Google Scholar
Maisonhaute, J.-E., Peres-Neto, P., Lucas, E. 2010. Influence of agronomic practices, local environment end landscape structure on predatory assemblage. Agriculture, Ecosystems and Environment, 139: 500507.CrossRefGoogle Scholar
Melnychuk, N.A., Olfert, O., Youngs, B., Gilliott, C. 2003. Abundance and diversity of Carabidae (Coleoptera) in different farming systems. Agriculture, Ecosystems and Environment, 95: 6972.CrossRefGoogle Scholar
Menalled, F.D., Smith, R.G., Dauer, J.T., Fox, T.B. 2007. Impact of agricultural management on carabid communities and weed seed predation. Agriculture, Ecosystems and Environment, 118: 4954.CrossRefGoogle Scholar
Mercado Cárdenas, A. Buddle, C.M. 2009. Introduced and native ground beetle assemblages (Coleoptera: Carabidae) along a successional gradient in an urban landscape. Journal of Insect Conservation, 13: 151163.CrossRefGoogle Scholar
Mongrain, D., Couture, L., Dubuc, J.-P., Comeau, A. 1997. Occurrence of the orange wheat blossom midge [Diptera: Cecidomyiidae] in Québec and its incidence on wheat grain microflora. Phytoprotection, 78: 1722.CrossRefGoogle Scholar
O'Rourke, M.E., Heggenstaller, A.H., Liebman, M., Rice, M.E. 2006. Post-dispersal weed seed predation by invertebrates in conventional and low-external-input crop rotation systems. Agriculture, Ecosystems and Environment, 116: 280288.CrossRefGoogle Scholar
Statistical Analysis Systems. 2004. SAS/STAT user's guide. Version 9.1. SAS Institute, Inc., Cary. North Carolina.Google Scholar
Statistical Analysis Systems. 2005. The GLIMMIX Procedure, November 2005. Cary, North Carolina. SAS Institute Inc. Google Scholar
Stinner, B.R., House, G.J. 1990. Arthropods and other invertebrates in conservation-tillage agriculture. Annual Review of Entomology, 35: 299318.CrossRefGoogle Scholar
Taylor, R.L., Maxwell, B.D., Boik, R.J. 2006. Indirect effects of herbicides on bird food resources and beneficial arthropods. Agriculture, Ecosystems and Environment, 116: 157164.CrossRefGoogle Scholar
Thiele, H.U. 1977. Carabid beetles in their environments: a study on habitat selection by adaptations in physiology and behaviour. Springer, Berlin/Heidelberg.CrossRefGoogle Scholar
Westerman, P.R., Wes, J.S., Kropff, M.J., Van der Werf, W. 2003. Annual losses of weed seeds due to predation in organic cereal fields. Journal of Applied Ecology, 40: 824836.CrossRefGoogle Scholar
White, S.S., Renner, K.A., Menalled, F.D., Landis, D.A. 2007. Feeding preferences of weed seed predators and effect on weed emergence. Weed Science, 55: 606612.CrossRefGoogle Scholar
Wratten, S.D. Thomas, C.F.G. 1997. Farm-scale spatial dynamics of predators and parasitoids in agricultural landscapes. In Species dispersal in agricultural landscapes. Edited by R.G.H. Bunce and D.C. Howard. Belhaven Press, London. pp. 219237.Google Scholar
Zhang, J. 1993. Biology of Harpalus rufipes De Geer (Coleoptera: Carabidae) in Maine and dynamics of seed predation. M.S. thesis, University of Maine, Orono, Maine, United States of America.Google Scholar
Zhang, J., Drummond, F.A., Liebman, M., Hartke, A. 1997. Phenology and dispersal ability of Harpalus rufipes De Geer (Coleoptera: Carabidae) in agroecosystems in Maine. Journal of Agricultural Entomology, 14: 171186.Google Scholar