Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T21:40:34.307Z Has data issue: false hasContentIssue false

Bumble bee (Hymenoptera: Apidae) activity and loss in commercial tomato greenhouses

Published online by Cambridge University Press:  31 May 2012

L.A. Morandin*
Affiliation:
Department of Zoology, The University of Western Ontario, London, Ontario, Canada N6A 5B7
T.M. Laverty
Affiliation:
Department of Zoology, The University of Western Ontario, London, Ontario, Canada N6A 5B7
P.G. Kevan
Affiliation:
Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
S. Khosla
Affiliation:
Ontario Ministry of Agriculture, Food and Rural Affairs, Greenhouse and Processing Crops Research Centre, Harrow, Ontario, Canada N0R 1G0
L. Shipp
Affiliation:
Agriculture and Agri-Food Canada, Greenhouse and Processing Crops Research Centre, Harrow, Ontario, Canada N0R 1G0
*
1 Author to whom all correspondence should be addressed (E-mail: [email protected]).

Abstract

Activity of bumble bees, Bombus impatiens Cresson, was examined in commercial tomato, Lycopersicon esculentum Mill. (Solanaceae), greenhouses in relation to greenhouse covering type, solar radiation, greenhouse temperature and humidity. Bumble bee activity was measured by photodiode monitors inserted into the entrance of the colonies. Colony sizes were monitored as an indicator of bee loss through gutter ventilation systems in relation to covering. Activity monitors were found to be a good predictor of actual bumble bee entrances and exits (r2 = 0.85). Bumble bee activity was 94.0% greater under the ultravioltet (UV)-transmitting covering than under ones that transmitted less UV light. No relationship was found between bee activity and the amount of solar radiation or internal greenhouse humidity. Bee activity was weakly positively correlated with internal greenhouse temperature (r2 = 0.18). Bee activity was not different during three periods of the day: morning, midday, and evening. The mean ± SE colony size under the UV-transmitting covering was 86.0 ± 2 bees per colony after 10 days within the greenhouses, compared with 36.4 ± 5.8 bees per colony under the other three types of covering. Our results suggest that bee activity is greatest and bee loss through gutter ventilation systems lowest in greenhouses made with coverings that transmit high levels of UV light.

Résumé

L’activité des bourdons, Bombus impatiens Cresson, a été étudiée dans des serres de culture commerciale de tomates, Lycopersicon esculentum Mill. (Solanaceae), en fonction du type de couverture de la serre, de la radiation solaire, des conditions de température et d’humidité. L’activité des bourdons a été mesurée au moyen de sondes à photodiodes insérées à l’entrée des colonies. Les tailles des colonies servaient d’indicateurs des pertes de bourdons par le système de ventilation des gouttières en relation avec la couverture. Les sondes d’activité se sont avérées de bons outils pour prédire les entrées et sorties réelles des bourdons (r2 = 0,85). L’activité des bourdons était de 94,0% plus importante sous les couvertures qui laissent passer l’ultraviolet (UV) que sous les couvertures qui transmettent moins bien la lumière UV. Nous n’avons pas trouvé de relation entre l’activité des bourdons et la quantité de radiation solaire ou d’humidité à l’intérieur des serres. L’activité des bourdons était en faible corrélation positive avec la température à l’intérieur des serres (r2 = 0,18). L’activité ne différait pas au cours des périodes de la journée : matin, midi et soir. La taille moyenne ± écart type des colonies sous la couverture qui laisse passer l’ultraviolet a été estimée à 86,0 ± 2 individus par colonie après 10 jours en serre, comparativement à 36,4 ± 5,8 individus par colonie sous les trois autres types de couverture. Nos résultats indiquent que l’activité des bourdons est maximale et la perte d’individus par le système de ventilation des gouttières, minimale dans les serres ou la couverture laisse passer l’ultraviolet.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrol, D.P. 1990. Pollination activity of alfalfa-pollinating subtropical bees Megachile nana and Megachile flavipes (Hymenoptera: Megachilidae). Tropical Ecology 31: 106–15Google Scholar
Abrol, D.P. 1998. Foraging ecology and behaviour of the alfalfa pollinating bee species Megachile nana (Hymenoptera: Megachilidae). Entomologia Generalis 22: 233–7CrossRefGoogle Scholar
Armbruster, W.S., McCormick, K.D. 1990. Diel foraging patterns of male euglossine bees: ecological causes and evolutionary response by plants. Biotropica 22: 160–71CrossRefGoogle Scholar
Asada, S., Ono, M. 1996. Crop pollination by Japanese bumblebees, Bombus spp. (Hymenoptera: Apidae): tomato foraging behavior and pollination efficiency. Applied Entomology and Zoology 31: 581–6CrossRefGoogle Scholar
Banda, H.J., Paxton, R.J. 1991. Pollination of greenhouse tomatoes by bees. Acta Horticulturae (Wageningen) 288: 194–8CrossRefGoogle Scholar
Brines, M.L., Gould, J.L. 1982. Skylight polarization patterns and animal orientation. Journal of Experimental Biology 96: 6991CrossRefGoogle Scholar
Chen, C.T., Hsieh, F.K. 1996. Evaluation of pollination efficiency of the bumblebee (Bombus terrestris L.) on greenhouse tomatoes. Zhonghua Kunchong 16: 167–75Google Scholar
Corbet, S.A., Fussell, R.A., Fraser, A., Gunson, C., Savage, A., Smith, K. 1993. Temperature and the pollinating activity of social bees. Ecological Entomology 18: 1730CrossRefGoogle Scholar
Dogterom, M.H., Matteoni, J.A., Plowright, R.C. 1998. Pollination of greenhouse tomatoes by the North American Bombus vosnesenskii (Hymentoptera: Apidae). Journal of Economic Entomology 91: 71–5CrossRefGoogle Scholar
Heinrich, B. 1979. Bumblebee economics. 2nd edition. Cambridge, Massachusetts, and London, England: Harvard University PressGoogle Scholar
Jarvis, W.R. 1992. Managing diseases in greenhouse crops. St. Paul, Minnesota: American Phytopathological Society PressGoogle Scholar
Kevan, P.G. 1970. High arctic insect flower relations: the inter-relationships of arthropods and flowers at Lake Hazen, Ellesmere Island, N.W.T., Canada. PhD dissertation, University of Alberta, Edmonton, Alberta, CanadaGoogle Scholar
Kevan, P.G. 1979. Vegetation and floral colors revealed by ultraviolet light: interpretational difficulties for functional significance. American Journal of Botany 66: 749–51CrossRefGoogle Scholar
Kevan, P.G. 1983. Floral colours through the insect eye: what they are and what they mean. pp 325in Jones, C.E. and Little, R.J. (Eds), Handbook of experimental pollination biology. New York: Scientific and Academic Editions, Van Nostrand and CoGoogle Scholar
Kevan, P.G., Backhaus, W.G.K. 1998. Color vision: ecology and evolution in making the best of the photic environment. pp 163–83 in Backhaus, W.G.K., Kliegl, R., Werner, J.S. (Eds), Color vision: perspectives from different disciplines. New York: Walter de GruyterCrossRefGoogle Scholar
Kevan, P.G., Straver, W.A., Offer, M., Laverty, T.M. 1991. Pollination of greenhouse tomatoes by bumble bees in Ontario. Proceedings of the Entomological Society of Ontario 122: 15–9Google Scholar
Laughlin, S.B. 1976. The sensitivities of dragonfly photoreceptors and the voltage gain of transduction. Journal of Comparative Physiology 111: 221–47CrossRefGoogle Scholar
Lundberg, H. 1980. Effects of weather on foraging-flights of bumblebees (Hymenoptera, Apidae) in a subalpine/alpine area. Holarctic Ecology 3: 104–10Google Scholar
Menzel, R., Backhaus, W. 1991. Colour vision in insects. pp 268–88 in Gouras, P. (Ed), Vision and visual dysfunction. The perception of colour. London: Macmillan PressGoogle Scholar
Menzel, R., Greggers, U. 1985. Natural phototaxis and its relationship to colour vision in honey bees. Journal of Comparative Physiology 141: 389–93CrossRefGoogle Scholar
Morandin, L.A., Laverty, T.M., Kevan, P.G. 2001 a. Effect of bumble bee (Hymenoptera: Apidae) pollination intensity on the quality of greenhouse tomatoes. Journal of Economic Entomology 94: 172–9CrossRefGoogle ScholarPubMed
Morandin, L.A., Laverty, T.M., Kevan, P.G. 2001 b. Bumble bee (Hymenoptera: Apidae) activity and pollination levels in commercial tomato greenhouses. Journal of Economic Entomology 94: 462–7CrossRefGoogle ScholarPubMed
Ontario Ministry of Food and Rural Affairs. 2001. Horticulture statistics. Toronto, Ontario: Queen's Printer for Ontario [Available at www.gov.on.ca/OMAFRA/english/stats/hort/index.html (accessed on 28 September 2001)]Google Scholar
Peitsch, D., Fietz, A., Hertel, H., De Souza, J., Ventura, D.F., Menzel, R. 1992. The spectral input systems of hymenopteran insects and their receptor-based colour vision. Journal of Comparative Physiology A 170: 2340CrossRefGoogle ScholarPubMed
Pressman, E., Shaked, R., Rosenfeld, K., Hefetz, A. 1998. A comparative study of the efficiency of bumble bees and an electric bee in pollinating unheated greenhouse tomatoes. Journal of Horticultural Science & Biotechnology 74: 101–4CrossRefGoogle Scholar
Rozenberg, G.V. 1966. Twighlight. A study in atmospheric optics. New York: Plenum PressGoogle Scholar
von Frisch, K. 1965. Tanzsprache und Orientierung der Bienen. Berlin, Heidelberg, and New York, New York: SpringerCrossRefGoogle Scholar
von Helverson, O., Edrich, W. 1974. The spectral sensitivity of polarized light orientation in the honeybee. Journal of Comparative Physiology 94: 3347Google Scholar
von Hess, V. 1913. Experimentelle Untersuchungen uber den angeblichen Farbensinn der Bienen. Zoologisches Jahrbuch (Physiologie) 34: 81106Google Scholar
Williams, C.B. 1940. The analysis of four years captures of insects in a light trap. Part 2. The effect of weather conditions on insect activity; and the estimation and forecasting of changes in the insect population. Transactions of the Royal Entomological Society of London 90: 227306CrossRefGoogle Scholar
Williams, C.B. 1961. Studies in the effect of weather conditions on the activity and abundance of insect populations. Philosophical Transactions of the Royal Society of London B Biological Sciences 244: 331–78Google Scholar
Williams, C.B., Osman, M.F.H. 1960. A new approach to the problem of the optimum temperature for insect activity. Journal of Animal Ecology 29: 187–90CrossRefGoogle Scholar