Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T19:50:29.687Z Has data issue: false hasContentIssue false

Biology of Caloptilia fraxinella (Lepidoptera: Gracillariidae) on ornamental green ash, Fraxinus pennsylvanica (Oleaceae)

Published online by Cambridge University Press:  02 April 2012

M.L. Evenden
Affiliation:
Department of Biological Sciences, CW 405 Biological Sciences Building, University of Alberta, Alberta, Canada T6G 2E9 (e-mail: [email protected])

Abstract

The ash leaf cone roller, Caloptilia fraxinella (Ely), is a leaf-mining moth that has recently become a significant pest of horticultural ash, Fraxinus L., species in communities throughout the western prairie provinces of Canada. The study examines the spatial and temporal within-host distribution of immature stages of C. fraxinella on green ash, Fraxinus pennsylvanica Marsh. Female C. fraxinella showed a preference for oviposition sites in the lower canopy and on the south side of the tree at the beginning and middle of the 3-week oviposition period, respectively, but no preference at the end of the period. Oviposition was constrained temporally and occurred mainly just after green ash bud flush. Immature stages were sampled throughout the growing season, and measured widths of larval head capsules showed five instars. Fourth-instar larvae disperse from the mined leaflet to a new leaflet, roll it into a cone, and pupate. Neither canopy height nor ordinal direction affected the position of larvae in the canopy, but numbers of immature stages varied by tree within a site. Female and male moths eclose from rolled leaf cones synchronously throughout the emergence period. The study provides some of the basic biological information required to design an integrated pest management program to target this emerging pest of horticultural ash trees.

Résumé

Caloptilia fraxinella (Ely) est un papillon de nuit à larve mineuse de feuilles qui est récemment devenu un important ravageur d’espèces du frêne horticole, Fraxinus L., dans les communautés de l’ensemble des provinces des prairies de l’ouest du Canada. La présente étude examine la répartition spatiale et temporelle sur l’hôte des stades immatures de C. fraxinella sur le frêne rouge, Fraxinus pennsylvanica Marsh. Les femelles de C. fraxinella montrent des préférences de sites de ponte sur la canopée inférieure et sur le côté sud de l’arbre, respectivement au début et au milieu de la période de ponte, qui dure 3 semaines; elles ne montrent aucune préférence à la fin de la période. La ponte est restreinte dans le temps et se fait principalement juste après le débourrement des bourgeons du frêne rouge. Les stades immatures ont été échantillonnés durant toute la saison de croissance et les largeurs des capsules céphaliques des larves indiquent l’existence de cinq stades larvaires. Les larves de quatrième stade quittent les petites feuilles qu’elles minaient, se déplacent vers une nouvelle jeune feuille qu’elles enroulent en un cône pour y faire leur nymphose. Il n’y a pas d’effet de la hauteur de la canopée, ni de l’orientation sur l’emplacement des larves dans la canopée, mais le nombre d’immatures varie d’un arbre à l’autre dans un même site. Les papillons femelles et mâles émergent de façon synchrone des cônes de feuilles durant toute la période d’émergence. Cette étude fournit les données biologiques de base nécessaires pour planifier un programme de lutte intégrée contre ce nouveau ravageur des frênes horticoles qui est en progression.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basset, Y. 1991. The spatial distribution of herbivory, mines and galls within an Australian rain forest tree. Biotropica, 23: 271281.Google Scholar
Brown, J.L., Vargo, S., Connor, E.F., and Nuckols, M.S. 1997. Causes of vertical stratification in the density of Cameraria hamadryadella. Ecological Entomology, 22: 1625.Google Scholar
Bultman, T.L., and Faeth, S.H. 1986. Effect of withinleaf density and leaf size on pupal weight of a leaf-miner, Cameraria (Lepidoptera: Gracillariidae). Southwestern Naturalist, 31: 201206.CrossRefGoogle Scholar
Bultman, T.L., and Faeth, S.H. 1988. Abundance and mortality of leaf miners on artificially shaded Emory oak. Ecological Entomology, 13: 131142.CrossRefGoogle Scholar
Connor, E.F. 2006. Effects of the light environment on oviposition preference and survival of a leaf-mining moth, Cameraria hamadryadella (Lepidoptera: Gracillariidae), on Quercus alba L. Ecological Entomology, 31: 179184.Google Scholar
Evenden, M.L., Armitage, G., and Lau, R. 2007. Effects of nutrition and methoprene treatment upon reproductive diapause in Caloptilia fraxinella (Lepidoptera: Gracillariidae). Physiological Entomology, 32: 275282.CrossRefGoogle Scholar
Evenden, M.L., Gries, R., and Gries, G. 2008. Attractiveness and toxicity of an attracticide formulation on adult males of ash leaf cone roller, Caloptilia fraxinella. Entomologia Experimentalis et Applicata, 127: 3038.Google Scholar
Fletcher, L.E., Yack, J.E., Fitzgerald, T.G., and Hoy, R.R. 2006. Vibrational communication in the cherry leaf roller caterpillar Caloptilia serotinella (Gracillarioidea: Gracillariidae). Journal of Insect Behavior, 19: 118.CrossRefGoogle Scholar
Furniss, M.M., Holsten, E.H., Foote, M.J., and Bertram, M. 2001. Biology of a willow leafblotch miner, Micrurapteryx salicifoliella, (Lepidoptera: Gracillariidae) in Alaska. Environmental Entomology, 30: 736741.CrossRefGoogle Scholar
Green, T.A., and Prokopy, R.J. 1991. Oviposition behavior of the apple blotch leafminer, Phyllonorycter crataegella (Clemens) (Lepidoptera: Gracillariidae). Journal of the New York Entomological Society, 99: 654663.Google Scholar
Green, T.A., and Prokopy, R.J. 1998. Diurnal behavior of the apple blotch leafminer moth, Phyllonorycter crataegella (Lepidoptera: Gracillariidae). The Canadian Entomologist, 130: 415425.CrossRefGoogle Scholar
Jones, J.M., and Raske, A.G. 1976. Notes on the biology of the birch leafminer, Fenusa pusilla (Lep.), in Newfoundland (Hymenoptera: Tenthredinidae). Phytoprotection, 57: 6976.Google Scholar
Kitamura, M., Takashi, N., Hattori, K., Ishisda, T.A., Shibata, S., Sato, H., and Kimura, M.T. 2007. Among-tree variation in leaf traits and herbivore attacks in a deciduous oak, Quercus dentata. Scandanavian Journal of Forest Research, 22: 211218.CrossRefGoogle Scholar
Koricheva, Y.G. 1990. The importance of illumination in choice by oviposition site by Caloptilia syringella (Lepdioptera, Gracillariidae). Zoologicheskii Zhurnal, 9: 151154.Google Scholar
Kozlov, M.V., and Koricheva, Y.G. 1991. The within-tree distribution of caterpillar mines. United States Department of Agriculture Forest Service General Technical Report NE-153. pp. 240255.Google Scholar
Kumata, T. 1978. A new stem-miner of alder in Japan, with a review of the larval transformation in the Gracillariidae (Lepidoptera). Insecta Matsumurana (new series), 13: 127.Google Scholar
Maier, C.T. 1995. Hosts and density of Lyonetia spp. (Lepidoptera: Lyonetiidae) mining the foliage of woody ericaceous and rosaceous plants. Annals of the Entomological Society of America, 88: 739747.Google Scholar
Mopper, S., Faeth, S.H., Boecklen, W.J., and Simberloff, D.S. 1984. Host-specific variation in leaf miner population dynamics: effects on density, natural enemies and behaviour of Stilbosis quadricustatella (Lepidoptera: Cosmopterigidae). Ecological Entomology, 9: 169177.CrossRefGoogle Scholar
New, T.R. 1981. The oak leaf-miner Phyllonorycter messaniella (Zeller) (Lepidoptera: Gracillariidae), in Melbourne. Australian Journal of Zoolology, 29: 895905.Google Scholar
Pena, J.E., and Schaffer, B. 1997. Intraplant distribution and sampling of the citrus leafminer (Lepidoptera: Gracillariidae) on lime. Journal of Economic Entomology, 90: 458464.Google Scholar
Pohl, G.R., Saunders, C., Barr, W.B., Wartenbe, M.D., and Fownes, S.L. 2004. Caloptilia fraxinella (Lepidoptera: Gracillariidae), a new pest of ash (Oleaceae: Fraxinus spp.) on the Canadian prairies. The Canadian Entomologist, 136: 733736.Google Scholar
Potter, D.A. 1992. Abundance and mortality of a specialist leafminer in response to experimental shading and fertilization of American holly. Oecologia, 91: 1422.CrossRefGoogle Scholar
Reavey, D., and Gaston, K.J. 1991. The importance of leaf structure in oviposition by leaf-mining microlepidoptera. Oikos, 61: 1928.CrossRefGoogle Scholar
SAS Institute Inc. 1998. StatView™. SAS Institute Inc., Cary, North Carolina.Google Scholar
Sato, H. 1991. Differential resource utilization and cooccurrence of leaf miners on oak (Quercus dentata). Ecological Entomology, 16: 105113.Google Scholar
Shibata, S., Ishida, T.A., Soeya, F., Morino, N., Yoshida, D., Sato, H., and Kimura, M.T. 2001. Within-tree variation in density and survival of leafminers on oak Quercus dentata. Ecological Research, 16: 135143.CrossRefGoogle Scholar
Stiling, P.D., Simberloff, D., and Anderson, L.C. 1987. Non-random distribution patterns of leaf miners on oak trees. Oecologia, 73: 116119.CrossRefGoogle Scholar
Williams, D.J. 2007. Biology of the spiny ash sawfly, Eupareophora parca (Hymenoptera: Tenthredinidae: Blennocampinae), in Edmonton, Alberta. The Canadian Entomologist, 139: 269277.Google Scholar
Yarnes, C.T., and Boecklen, W.J. 2005. Abiotic factors promote plant heterogeneity and influence herbivore performance and mortality in Gambel's oak (Quercus gambelii). Entomologia Experimentalis et Applicata, 114: 8795.Google Scholar