Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T06:27:24.141Z Has data issue: false hasContentIssue false

Biology and phenology of Cecidophyopsis psilaspis (Acari: Eriophyidae) on Pacific yew (Taxaceae)

Published online by Cambridge University Press:  02 April 2012

Valin G. Marshall*
Affiliation:
Science, Environment and Technology Division, Royal Roads University, 2005 Sooke Road, Victoria, British Columbia, Canada V9B 5Y2
Marilyn R. Clayton
Affiliation:
Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
*
1Corresponding author (e-mail: [email protected]).

Abstract

The biology and phenology of the yew big bud mite, Cecidophyopsis psilaspis (Nalepa, 1893), were studied on Pacific yew, Taxus brevifolia Nutt., in British Columbia, Canada. The mite showed the typical life cycle of eriophyoids on evergreen hosts, with all stases being present throughout the year. The numbers of C. psilaspis, which colonized both vegetative and reproductive buds, peaked in May to August, with the lowest numbers in March and October and the highest numbers in June. Mite numbers differed among bud types, with averages following the sequence terminal buds = lateral buds > male reproductive buds > axillary buds > female reproductive buds > latent buds. Very few mites were found in latent buds except during bud formation, when other vegetative buds were unavailable. Reproductive buds were colonized mostly from May to July. There was no evidence of arrhenotoky in C. psilaspis, as the proportion of mites that were females ranged from 54% to 100%. Temperature and predation were considered the likely factors that determine population fluctuations. It was hypothesized that C. psilaspis abundance increased following favorable spring temperatures and new food resources, whereas predation by other mite species and lower temperatures, which prolonged development, were responsible for the low numbers in March and October.

Résumé

Nous avons étudié la biologie et la phénologie du phytopte de l'if (Cecidophyopsis psilaspis (Nalepa, 1893)) sur l'if de l'Ouest (Taxus brevifolia Nutt.) en Colombie-Britannique (Canada). Le cycle biologique de cet acarien est typique des phytoptes ravageurs des conifères, et tous les stades se rencontrent simultanément pendant toute l'année. Le nombre de C. psilaspis qui colonizait les bourgeons végétatifs et reproducteurs atteignait un sommet de mai à août, les populations les plus faibles s'observant en mars et en octobre et celles les plus élevées, en juin. Le nombre de phytoptes variait selon le type de bourgeon, en moyenne de la manière suivante: bourgeons terminaux = bourgeons latéraux > bourgeons reproducteurs mâles > bourgeons axillaires > bourgeons reproducteurs femelles > bourgeons latents. Les phytoptes n'étaient présents qu'en très faible nombre dans les bourgeons latents, sauf lors de la formation des bourgeons, période pendant laquelle il n'y avait pas d'autres types de bourgeon végétatif. Ils colonizaient les bourgeons végétatifs surtout de mai à juillet. Aucune arrhénotoquie n'était manifeste chez le C. psilaspis, puisque les femelles constituaient de 54 % à 100 % de la population. La température et la prédation étaient considérées comme les facteurs influant vraisemblablement le plus sur les fluctuations des populations. Il a été posé comme hypothèse que l'abondance de C. psilaspis augmentait en présence de températures printanières clémentes et de nouvelles ressources alimentaires, alors que la présence d'autres espèces d'acariens prédateurs et de températures plus froides, qui prolongeaient la période de développement, étaient à l'origine des faibles populations observées en mars et en octobre.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amrine, J.W. Jr, Stasny, T.A. 1994. Catalog of the Eriophyoidea (Acarina: Prostigmata) of the World. West Bloomfield, New York: Indira Publishing HouseGoogle Scholar
Bartkowiak, S., Białobok, S., Bugała, W., Czartoryski, A., Hejnowicz, A., Król, S., Srodon, A., Szaniawski, R.K. 1978. Cis pospolity — Taxus baccata L. [The yew — Taxus baccata L.] Nasze Drzewa Lesne, Monografie Popularnonaukowe 3 (1975): 1183. [In Polish; translated to English by H Markiewicz for the Department of Agriculture and the National Science Foundation, Washington, District of Columbia. Available from US Department of Commerce, National Technical Information Service, Springfield, Virginia 22161.]Google Scholar
Difazio, S. 1995. Reproductive biology of Taxus brevifolia under a range of canopy conditions in western Washington. MSc thesis, Oregon State University, Corvallis, OregonGoogle Scholar
Duncan, R.W., Bown, T.A., Marshall, V.G., Mitchell, A.K. 1997. Yew big bud mite. Canadian Forestry Service Pacific Forest Research Centre Forest Pest Leaflet 79Google Scholar
Dunley, J.E., Croft, B.A. 1996. Eriophyoids as competitors of other phytophagous mites. pp 751–5 in Lindquist, E.E., Sabelis, M.W., Bruin, J. (Eds), Eriophyoid mites — their biology, natural enemies and control. Amsterdam: Elsevier Scientific PublicationsCrossRefGoogle Scholar
Heming, B.S. 2003. Insect development and evolution. Ithaca, New York: Cornell University PressCrossRefGoogle Scholar
Jeppson, L.R., Keifer, H.H., Baker, E.W. 1975. Mites injurious to economic plants. Berkeley, California: University of California PressCrossRefGoogle Scholar
Johnson, W.T., Lyon, H.H. 1991. Insects that feed on trees and shrubs. 2nd edition. Ithaca, New York: Cornell University PressGoogle Scholar
Lindquist, E.E., Oldfield, G.N. 1996. Evolution of eriophyoid mites in relation to their host plants. pp 277300in Lindquist, E.E., Sabelis, M.W., Bruin, J. (Eds), Eriophyoid mites — their biology, natural enemies and control. Amsterdam: Elsevier Scientific PublicationsCrossRefGoogle Scholar
Lindquist, E.E., Sabelis, M.W., Bruin, J. (Eds). 1996. Eriophyoid mites — their biology, natural enemies and control. Amsterdam: Elsevier Scientific PublicationsGoogle Scholar
Manson, D.C.M., Oldfield, G.N. 1996. Life forms, deuterogyny, diapause and seasonal development. pp 173–83 in Lindquist, E.E., Sabelis, M.W., Bruin, J. (Eds), Eriophyoid mites — their biology, natural enemies and control. Amsterdam: Elsevier Scientific PublicationsCrossRefGoogle Scholar
Marshall, V.G., Clayton, M.R., Newsom, D.N. 1998. Morphology, ontogeny and intraspecific variability of the yew big bud mite, Cecidophyopsis psilaspis (Acari: Eriophyidae). The Canadian Entomologist 130: 285304CrossRefGoogle Scholar
Massee, A.M. 1928. The life history of the black currant gall mite Eriophyes ribis (Westw.) Nal. Bulletin of Entomological Research 18: 279309CrossRefGoogle Scholar
Mitchell, A.K. 1992. The yews and taxol: a bibliography (1970–1991). Canadian Forestry Service Pacific Forest Research Centre Information Report BC-X-338Google Scholar
Mitchell, A.K., Duncan, R.W., Bown, T.A., Marshall, V.G. 1997. Origin and distribution of the yew big bud mite, Cecidophyopsis psilaspis (Nalepa), in British Columbia. The Canadian Entomologist 129: 745–55CrossRefGoogle Scholar
Niklas, K.J. 1985. Wind pollination of Taxus cuspidatus. American Journal of Botany 72: 113CrossRefGoogle Scholar
Nuszdorfer, F.C., Klinka, K., Demarchi, D.A. 1991. Coastal Douglas-fir zone. pp 8193in Meidinger, D., Pojar, J. (Eds), Ecosystems of British Columbia. Victoria, British Columbia: British Columbia Ministry of ForestsGoogle Scholar
Perring, T.M., McMurtry, J.A. 1996. Other predatory arthropods. pp 471–9 in Lindquist, E.E., Sabelis, M.W., Bruin, J. (Eds), Eriophyoid mites — their biology, natural enemies and control. Amsterdam: Elsevier Scientific PublicationsCrossRefGoogle Scholar
Sabelis, M.W. 1996. Phytoseiidae. pp 427–56 in Lindquist, E.E., Sabelis, M.W., Bruin, J. (Eds), Eriophyoid mites — their biology, natural enemies and control. Amsterdam: Elsevier Scientific PublicationsCrossRefGoogle Scholar
Sabelis, M.W., Bruin, J. 1996. Life history patterns, food plant choice and dispersal. pp 329–66 in Lindquist, E.E., Sabelis, M.W., Bruin, J. (Eds), Eriophyoid mites — their biology, natural enemies and control. Amsterdam: Elsevier Scientific PublicationsCrossRefGoogle Scholar
Sternlicht, M., Goldenberg, S. 1971. Fertilization, sex ratio and post-embryonic stages of the citrus bud mite Aceria sheldoni (Ewing) (Acarina: Eriophyidae). Bulletin of Entomological Research 60: 391–7CrossRefGoogle Scholar
Thistlewood, H.M.A., Clements, R.D., Harmsen, R. 1996. Stigmaeidae. pp 457–70 in Lindquist, E.E., Sabelis, M.W., Bruin, J. (Eds), Eriophyoid mites — their biology, natural enemies and control. Amsterdam: Elsevier Scientific PublicationsCrossRefGoogle Scholar
Zhao, S-F, Amrine, J.W. Jr. 1997. A new method for studying aerial dispersal behaviour of eriophyoid mites (Acari: Eriophyoidea). Systematic and Applied Acarology 2: 107–10CrossRefGoogle Scholar