Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T17:53:13.492Z Has data issue: false hasContentIssue false

BIOACTIVITY AND EFFICACY OF MCOL AND SEUDENOL AS POTENTIAL ATTRACTIVE BAIT COMPONENTS FOR DENDROCTONUS RUFIPENNIS (COLEOPTERA: SCOLYTIDAE)

Published online by Cambridge University Press:  31 May 2012

Robert R. Setter
Affiliation:
Bugbusters Pest Management Inc., Box 1750, Prince George, British Columbia, Canada V2L 4v7
John H. Borden
Affiliation:
Centre for Environmental Biology, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

Abstract

In randomized complete block experiments using multiple-funnel traps frontalin was only moderately attractive to spruce beetles, Dendroctonus rufipennis Kirby, in northern British Columbia. MCOL (1-methylcyclohex-2-en-1-ol) of any enantiomeric composition significantly enhanced the attraction of both sexes (up to 3.4 and 4.2 times for females and males, respectively) to traps baited with frontalin. The lack of an enantiospecific preference for MCOL aligns beetles in northern British Columbia with those in southeastern British Columbia and northern Alberta, but not with enantiospecific populations in southern British Columbia and Alaska. In tree baits, neither MCOL nor seudenol (3-methylcyclohex-2-en-1-ol) enhanced the efficacy of frontalin. The power of frontalin alone at a release rate of 1.2 mg per 24 h (half the rate in commercial baits) indicates that the currently used operational tree baits could be modified by lowering the dose and eliminating α-pinene.

Résumé

Dans un plan d’expériences à blocs complets aléatoires utilisant des pièges à entonnoirs multiples, la frontaline s’est avérée modérément attirante pour le Dendroctone de l’épinette, Dendroctonus rufipennis Kirby, dans le nord de la Colombie-Britannique. Le MCOL (1-méthylcyclohex-2-en-1-ol), de n’importe quelle composition énantiomère, augmente significativement l’attirance des mâles et des femelles (jusqu’à 3,4 fois pour les femelles et 4,2 fois pour les mâles) vers les pièges garnis de frontaline. L’absence de préférence énantiospécifique pour le MCOL apparente les dendroctones du nord de la Colombie-Britannique à ceux du sud-est de la Colombie-Britannique et du nord de l’Alberta, mais non à ceux des populations énantiospécifiques du sud de la Colombie-Britannique ou de l’Alaska. Dans les pièges installés dans les arbres, ni le MCOL, ni le seudénol (3-méthylcyclohex-2-en-1-ol) n’augmentent l’efficacité de la frontaline. L’efficacité de la frontaline seule, administrée à raison de 1,2 mg/24 h (la moitié du taux administré dans les pièges commerciaux) indique que les pièges couramment utilisés pourraient être modifiés par diminution de la dose et élimination de l’α-pinène.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borden, J.H. 1995. Development and use of semiochemicals against bark and timber beetles. pp. 431–49 in Armstrong, J.A., Ives, W.G.H. (Eds.), Forest Insect Pests in Canada. Natural Resources Canada, Ottawa.Google Scholar
Borden, J.H., Chong, L.J., Lindgren, B.S., Begin, E.J., Ebata, T.M., Maclauchlan, L.E., Hodgkinson, R.S. 1992. A simplified tree bait for the mountain pine beetle. Canadian Journal of Forest Research 23: 1108–13.Google Scholar
Borden, J.H., Gries, G., Chong, L.J., Werner, R.A., Holsten, E.H., Wieser, H., Dixon, E.A., Cerezke, H.E. 1996. Regionally-specific bioactivity of two new pheromones for Dendroctonus rufipennis (Kirby) (Col., Scolytidae). Journal of Applied Entomology 120: 321–26.Google Scholar
Bunnel, F.X., Kremsater, L.L. 1993. Sustaining wildlife in managed forests. Northwest Environmental Journal 6: 243–69.Google Scholar
Coupe, R., Stewart, A.C., Wikeem, B.M. 1991. Engelmann spruce - subalpine fir zone. pp. 223–36 in Meidinger, D., Pojar, J. (Eds.), Ecosystems of British Columbia. British Columbia Ministry of Forests, Victoria.Google Scholar
Day, R.W., Quinn, G.D. 1989. Comparisons of treatments after an analysis of variance in ecology. Ecological Monographs 59: 433–63.CrossRefGoogle Scholar
Dyer, E.D.A. 1973. Spruce beetle aggregated by the synthetic pheromone frontalin. Canadian Journal of Forest Research 3: 486–94.Google Scholar
Dyer, E.D.A. 1975. Frontalin attractant in stands infested by the spruce beetle, Dendroctonus rufipennis (Coleoptera: Scolytidae). The Canadian Entomologist 107: 979–88.CrossRefGoogle Scholar
Dyer, E.D.A., Chapman, J.A. 1971. Attack by the spruce beetle, induced by frontalin or billets with burrowing females. Fisheries and Environment Canada Bi-Monthly Research Notes 27: 1011.Google Scholar
Dyer, E.D.A., Lawko, C.M. 1978. Effect of seudenol on spruce beetle and Douglas-fir beetle aggregation. Fisheries and Environment Canada Bi-Monthly Research Notes 34: 3032.Google Scholar
Elias, T.S. 1987. The complete trees of North America. Gramercy, New York.Google Scholar
Furniss, R.L., Carolin, V.M. 1977. Western forest insects. United States Department of Agriculture Miscellaneous Publication 1339.Google Scholar
Furniss, M.M., Baker, B.H., Holstetler, B.B. 1976. Aggregation of spruce beetles (Coleoptera) to seudenol and repression of attraction by methylcyclohexenone in Alaska. The Canadian Entomologist 108: 1297–302.Google Scholar
Gries, G., Pierce, H.D. Jr, Lindgren, B.S., Borden, J.H. 1988. New techniques for capturing and analyzing semiochemicals for scolytid beetles (Coleoptera: Scolytidae). Journal of Economic Entomology 81: 1715–20.Google Scholar
Holsten, E.H. 1984. Factors of susceptibility in spruce attack on white spruce in Alaska. Journal of the Entomological Society of British Columbia 81: 3945.Google Scholar
Kline, L.N., Schmitz, R.F., Rudinsky, J.A., Furniss, M.M. 1974. Repression of spruce beetle (Coleoptera) attraction by methycyclohexanone in Alaska. The Canadian Entomologist 106: 485–91.Google Scholar
Lindgren, B.S. 1983. A multiple funnel trap for scolytid beetles (Coleoptera). The Canadian Entomologist 115: 299302.CrossRefGoogle Scholar
Machmer, M.M., Steeger, C.S. 1993. The ecological roles of wildlife tree users in forest ecosystems. British Columbia Ministry of Forests Land Management Handbook 35.Google Scholar
Petter, A. 1994. Forest Practices Code of British Columbia Act. Bill 40, Third Session, Thirty-fifth Parliament, 43 Elizabeth 11, 1994, Legislative Assembly of British Columbia, Victoria, British Columbia.Google Scholar
Safranyik, L. 1988. The population biology of the spruce beetle in western Canada and implications for management. pp. 323in Payne, T.L., Saarenmaa, H. (Eds.), Integrated Control of Scolytid Bark Beetles. Virginia Polykchnic Institute and State University, Blacksburg, Virginia.Google Scholar
SAS Institute Inc. 1988. SAS users guide, release 6.03 edition. SAS Institute Inc., Carey, North Carolina.Google Scholar
Shore, T.L., Hall, P.M., Maher, T.F. 1990 Grid baiting of spruce stands with frontalin for the pre-harvest containment of the spruce beetle, Dendroctonus rufipennis (Kirby) (Col., Scolytidae). Journal of Applied Entomology 109: 515–19.Google Scholar
Weiser, H., Dixon, E.A., Cerezke, H.F., Mackenzie, A.A. 1991. Pheromone formulation for attracting spruce beetles. United States Patent No. 4,994,268.Google Scholar
Werner, R.A. 1994. Research on the use of semiochemicals to manage spruce beetles in Alaska. pp. 1521in Shea, P.J. (Ed.), Proceedings of the Symposium on Management of Western Bark Beetles with Pheromones: Research and Development, 22–25 June 1992, Kailua-Kona, Hawaii. US Forest Service General Technical Report PSW–GTR–150.Google Scholar
Werner, R.A., Holsten, E.H. 1984. Scolytidae associated with felled white spruce in Alaska. The Canadian Entomologist 116: 465–71.Google Scholar
Zar, J.H. 1984. Biostatistical Analysis. 2nd ed. Englewood Cliffs, New Jersey: Prentice Hall Inc.Google Scholar