Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T06:35:17.920Z Has data issue: false hasContentIssue false

ATTACK BY BARK BEETLES (COLEOPTERA: SCOLYTIDAE) FOLLOWING SPACING OF MATURE LODGEPOLE PINE (PINACEAE) STANDS

Published online by Cambridge University Press:  31 May 2012

L. Safranyik*
Affiliation:
Canadian Forest Service, Natural Resources Canada, 506 West Bumside Road, Victoria, British Columbia, Canada V8Z 1M5
T.L. Shore
Affiliation:
Canadian Forest Service, Natural Resources Canada, 506 West Bumside Road, Victoria, British Columbia, Canada V8Z 1M5
D.A. Linton
Affiliation:
Canadian Forest Service, Natural Resources Canada, 506 West Bumside Road, Victoria, British Columbia, Canada V8Z 1M5
*
1 Author to whom all correspondence should he addressed (E-mail: [email protected]).

Abstract

Variation in bark beetle attack following spacing of mature lodgepole pine stands in the East Kootenays of British Columbia was analyzed in relation to stand location (site), spacing treatment, and harvesting injury. Observations were made on three sites, each having three treatments: 4 × 4 m spacing, 5 × 5 m spacing, and untreated control. There was no statistically significant difference in the numbers of attacked trees among sites or treatments. However, in the spaced plots 94.3% of the attacked trees sustained harvesting injury or were located adjacent to skid trails. Dendroctonus valens LeConte was the dominant species attacking trees on the two drier sites, and Dendroctonus murrayanae Hopkins was the dominant species on the third site. There was no statistically significant variation in the percentage of attacked stumps among sites or spacing treatments. On average, 80.7% of the stumps were attacked; attacked stumps had larger diameters than unattacked stumps. Thirteen species of bark beetles were found attacking stumps. Hylurgops porosus LeConte was the most numerous species at all three sites. Based on the fit of the Michaelis–Menten equations to species accumulation curves, an estimated 76–90% of the number of species attacking stumps at the three sites were observed in bark samples. Margalef’s index of diversity for the two drier sites (Cranbrook = 1.15, Parson = 1.13) was nearly identical and higher than at the moist site (Elkford = 0.89). Pairs of sites had five to six species in common, and the Sorensen coefficient of similarity ranged from 0.52 to 0.71, indicating moderate similarity in species composition. The abundance versus species rank relationship was fitted by three models: the MacArthur broken stick model, the geometric series, and the Zeta distribution. The latter gave good fit to data from two sites, but none of the fitted models gave satisfactory fit to data from the third site, mainly because of the high abundance of the second ranked species (Orthotomicus caelatus Eichhoff). Our results indicated that stand characteristics affected species assemblages and abundances of bark beetle species that attacked stumps. Management practices that minimize injury to trees during the spacing operations are emphasized to reduce attack by bark beetles.

Résumé

Dans des peuplements mûrs de pin tordu latifolié des monts East Kootenay, en Colombie-Britannique, nous avons analysé les différences de taux d’infestation par les scolytes à la suite d’une éclaircie, selon la position du peuplement (station), le taux d’éclaircie et les blessures subies par les arbres. Dans chacune des trois stations étudiées, trois traitements d’éclaircie ont été effectués : éclaircie 4 × 4 m, éclaircie 5 × 5 m et absence d’éclaircie (témoin). Nous n’avons observé aucune différence significative entre les stations ni entre les traitements quant au nombre de souches infestées. Cependant, dans les parcelles éclaircies, 94,3% des arbres infestés avaient subi des blessures durant la récolte ou étaient situés à proximité de chemins de débar-dage. Le Dendroctonus valens LeConte était l’espèce dominante parmi les scolytes infestant les arbres des deux stations les plus sèches, tandis que le Dendroctonus murrayanae Hopkins dominait dans la troisième station. De même, nous n’avons relevé aucune différence significative entre les stations ni entre les traitements quant au pourcentage de souches infestées. Ce pourcentage était de 80,7% en moyenne, et les souches infestées avaient un plus fort diamètre que les souches non infestées. Dans les souches infestées, nous avons relevé 13 espèces de scolytes. Dans les trois stations, l’espèce la plus abondante était l’Hylurgops porosus LeConte. En ajustant les équations de Michaelis–Menten aux courbes cumulatives d’espèces, nous avons pu estimer que les espèces observées dans les échantillons d’écorce représentaient 76 à 90% des espèces infestant les souches dans les trois stations. Par ailleurs, l’indice de diversité de Margalef était à peu près identique dans les deux stations les plus sèches (1,15 à Cranbrook et 1,13 à Parson), alors qu’il était moins élevé dans la station la plus humide (Elkford, 0,89). Chaque paire de stations présentait cinq ou six espèces en commun, et les compositions en espèces présentaient une similarité modérée, puisque les coefficients de similarité de Sorensen allaient de 0,52 à 0,71. La relation entre l’abondance et le rang de chaque espèce a été ajustée selon trois modèles : le modèle du bâton brisé de MacArthur, la série géométrique et la distribution zêta. Ce dernier modèle permettait un bon ajustement des données provenant de deux des stations, mais aucun des modèles ne permettait un ajustement satisfaisant des données de la troisième station, principalement à cause de l’abondance élevée de l’espèce occupant le deuxième rang, l’Orthotomicus caelatus Eichhoff. Ces résultats montrent que les caractéristiques stationnelles ont un effet sur les scolytes s’attaquant aux souches, quant aux espèces présentes et à l’abondance de chacune. Pour réduire les risques d’infestation par les scolytes, il faut donc privilégier les pratiques d’aménagement qui causent le mois de blessures aux arbres durant l’éclaircie.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amman, G.D. 1989. Why partial cutting in lodgepole pine stands reduces losses to mountain pine beetle. pp. 4859in Amman, G.D. (Compiler), Proceedings of a Symposium on the Management of Lodgepole Pine to Minimize Losses to the Mountain Pine Beetle, 12–14 July 1988, Kalispell, Montana. U.S. Forest Service General Technical Report INT–262Google Scholar
Braumandl, T.F., Curran, M.P. (compilers). 1992. A field guide for site identification and interpretation for the Nelson Forest Region. British Columbia Ministry of Forests Land Management Handbook 20Google Scholar
Bright, D.E. Jr., 1976. The bark beetles of Canada and Alaska. Coleoptera: Scolytidae. Canada Department of Agriculture, Biosystematic Research Institute, Research Branch Publication 1526Google Scholar
Cole, D.M., McGregor, M.D. 1985. Silvicultural practices for lodgepole pine stands in commercial forests. pp. 4756in McGregor, M.D., Cole, D.M. (Eds.), Integrating management strategies for the mountain pine beetle with multiple-resource management of lodgepole pine forests. U.S. Forest Service General Technical Report INT–174Google Scholar
Colwell, R.K., Coddington, J.A. 1994. Estimating territorial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London 345: 101–18Google Scholar
Derman, C., Gleser, L.J., Olkin, I. 1973. A Guide to Probability Theory and Application. New York: Holt, Reinhart and Wilson, Inc.Google Scholar
Frontier, S. 1985. Diversity and structure in aquatic ecosystems. pp. 253312in Barnes, M. (Ed.), Oceanography and Marine Biology, Annual Review. Aberdeen: Aberdeen University PressGoogle Scholar
Furniss, R.L., Carolyn, V.M. 1977. Western forest insects. U.S. Department of Agriculture Miscellaneous Publication 1339CrossRefGoogle Scholar
Heck, K.L., van Belle, G., Siberloff, D. 1975. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56: 1459–61CrossRefGoogle Scholar
Keen, F.P. 1952. Insect enemies of western forests. U.S. Department of Agriculture, Miscellaneous Publication 273Google Scholar
Magurran, A.E. 1988. Ecological Diversity and its Measurement. Princeton: Princeton University PressCrossRefGoogle Scholar
Mitchell, J.L. 1994. Commercial thinning of mature lodgepole pine to reduce susceptibility to mountain pine beetle. Canadian Forestry Service, Pacific Forestry Centre, FRDA Report 224Google Scholar
Mitchell, R.G., Waring, R.H., Pitman, G.B. 1983. Thinning lodgepole pine increases tree vigor and resistance to mountain pine beetle. Forest Science 29: 204–11Google Scholar
Ramsey, C.B. (editor). 1998. Stand Density Management: Planning and Implementation, Conference Proceedings, 6–7 Nov. 1997, EdmontonGoogle Scholar
Safranyik, L., Morrison, D. 1998. Stand protection issues in thinning. pp. 8491in Ramsey, C.R. (Ed.), Stand Density Management: Planning and Implementation, Conference Proceedings, 6–7 Nov. 1997, EdmontonGoogle Scholar
Southwood, T.R.E. 1978. Ecological Methods. 2nd ed. New York: Chapman and HallGoogle Scholar
Waring, R.H., Pitman, G.B. 1985. Modifying lodgepole pine stands to change susceptibility to mountain pine beetle attack. Ecology 66: 889–97CrossRefGoogle Scholar
Whittaker, R.H. 1965. Dominance and diversity in land plant communities. Science (Washington, D.C. ) 147: 250–60CrossRefGoogle ScholarPubMed
Wood, S.L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs 6Google Scholar