Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-04T19:35:28.028Z Has data issue: false hasContentIssue false

Ancient temperate rain forest research in British Columbia1

Published online by Cambridge University Press:  02 April 2012

Neville N. Winchester
Affiliation:
Department of Biology, University of Victoria, P.O. Box 3020, Victoria, British Columbia, Canada V8W 3N5 (e-mail: [email protected])

Abstract

This paper is a tribute to Dr. R.A. Ring upon his retirement. During the past 12 years (1993–2005), an emerging canopy research program has established a wealth of baseline information on the structure and functioning of temperate rain forest canopy arthropod communities. Studies from research sites on Vancouver Island, British Columbia, have shown that ancient temperate rain forest canopy ecosystems contain a largely undescribed fauna that is specific to habitat features found only in these canopies. In particular, diverse assemblages of free-living mites have been shown to dominate conifer species and canopy microhabitats. For example, oribatid mites are the dominant arthropod fauna on branches, branches with attached lichens, and suspended soil accumulations. Species composition differs significantly between the ground and the canopy at both the family and the species level. Arboreal specificity may be due to intrinsic variation in habitat quality, habitat architecture, patchiness, and (or) resource availability. The prevalent patterns of habitat specialization, low vagility, and restricted distribution displayed by a large percentage of the resident canopy microarthropods are features often associated with forest ecoregions that have enjoyed relatively stable conditions for long periods of time, as have the ancient forests on Vancouver Island. Investigators in the “one-Ring lab” continue to document the diversity and abundance of canopy arthropods of temperate forests in British Columbia. In particular, studies are concerned with defining the organizing principles that elicit community patterns associated with the various levels of complexity in arboreal communities. Our long-term goal is to provide a greater degree of predictability when addressing temperate forest diversity issues. To meet the stated goals of sustainable forest management and retention of biodiversity, an extensive plan of ecological research that features arthropods is needed. This plan, fostered by Dr. Ring, should have as a priority the inventory and cataloguing of species assemblages and should address dynamic processes such as organismal dispersal and the effects of habitat loss and fragmentation on arthropods in ancient forests.

Résumé

Ce travail est un hommage au Prof. R.A. Ring. Il traite de la richesse des données de base accumulées sur la structure et le fonctionnement de la canopée de la forêt pluvieuse tempérée au cours des 12 dernières années (1993–2005) dans un programme en émergence de recherche sur la canopée. Les études faites à des sites de recherche sur l'île de Vancouver, Colombie-Britannique, montrent que les écosystèmes de la canopée de l'ancienne forêt pluvieuse tempérée contiennent une faune qui est, en grande partie, non décrite et qui est spécifique aux habitats particuliers que l'on ne trouve que là. Notamment, il y a divers peuplements d'acariens libres qui prédominent chez les espèces de conifères et dans les microhabitats de la canopée. Par exemple, les oribates forment le groupe dominant de la faune d'arthropodes sur les branches, les branches porteuses de lichens et dans les accumulations de sol suspendu. La composition spécifique dans les sols et celle de la canopée diffèrent significativement, tant au niveau des familles qu'à celui des espèces. La spécificité en fonction des arbres peut être due à des variations intrinsèques de la qualité de l'habitat, de l'architecture de l'habitat, de sa distribution contagieuse et (ou) de la disponibilité des ressources. Les patrons dominants de spécialisation des habitats, la mobilité réduite et les répartitions restreintes d'un pourcentage important des microarthropodes résidant dans la canopée sont des caractéristiques souvent associées aux écorégions forestières qui ont bénéficié de conditions stables pendant de longues périodes, comme c'est le cas des forêts anciennes de l'île de Vancouver. Les chercheurs du « one-Ring lab » continuent d'accumuler des informations sur la diversité et l'abondance des arthropodes de la canopée dans les forêts de la Colombie-Britannique. En particulier, certaines études cherchent à découvrir les principes d'organisation qui génèrent les patrons de communauté associés aux différents niveaux de complexité des communautés dans les arbres. Notre objectif à long terme est d'obtenir un plus grand pouvoir de prédiction dans les études qui s'intéressent à la question de la diversité des forêts tempérées. Afin d'atteindre les objectifs fixés de gestion durable des forêts et de maintien de la biodiversité, il faudra un programme élargi de recherche écologique qui inclut les arthropodes. Ce programme, mis de l'avant par le Prof. Ring, doit avoir comme priorités l'inventaire et le catalogage des regroupements d'espèces et doit s'intéresser aux processus dynamiques, tels que la dispersion des organismes et les effets de la perte d'habitats et de la fragmentation, sur les arthropodes des forêts anciennes.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

André, H.M. 1985. Associations between corticolous microarthropod communities and epiphytic cover on bark. Holarctic Ecology, 8: 113119.Google Scholar
Basset, Y., Novotny, V., and Miller, S. 2003. Studying forest canopies from above: the International Canopy Crane Network [online]. Smithsonian Tropical Research Institute and UNEP. Available from http://www.ecoport.org.Google Scholar
Behan-Pelletier, V.M., and Walter, D.E. 2000. Biodiversity of oribatid mites (Acari: Oribatida) in tree canopies and litter. In Invertebrates as webmasters in ecosystems. Edited by Coleman, D.C. and Hendrix, P.F.. CABI Publishing, Wallingford, United Kingdom. pp. 187202.CrossRefGoogle Scholar
Behan-Pelletier, V.M., and Winchester, N.N. 1998. Arboreal oribatid mite diversity: colonizing the canopy. Applied Soil Ecology, 9: 4551.CrossRefGoogle Scholar
Bengtsson, J. 2003. Temporal predictability in forest soil communities. Journal of Animal Ecology, 63(3): 653665.Google Scholar
Bultman, T.L., and Uetz, G.W. 1984. Effect of structure and nutritional quality of litter on abundances of litter-dwelling arthropods. American Midland Naturalist, 90: 4755.Google Scholar
Delamare-Debouteville, C. 1951. Microfaune du sol dans les pays tempérés et tropicaus. Hermann, Paris.Google Scholar
Dickinson, C.H., and Pugh, G.J.F. 1974. Biology of plant litter decomposition. Vols. 1 and 2. Academic Press, London.Google Scholar
Didham, R.K. 1997. An overview of invertebrate responses to forest fragmentation. In Forests and insects. Edited by Watt, A.D., Stork, N.E., and Hunter, M.D.. Chapman and Hall, London. pp. 303320.Google Scholar
Didham, R.K., and Fagan, L.L. 2004. Forest canopies. In Encyclopaedia of forest sciences. Edited by Burley, J., Evans, J., and Youngquist, J.. Academic Press, Elsevier Science, London. pp. 6880.Google Scholar
Didham, R.K., and Lawton, J.H. 1999. Edge structure determines the magnitude of changes in microclimate and vegetation structure in forest fragments. Biotropica, 31: 1730.Google Scholar
Erwin, T.L. 1983. Tropical forest canopies, the last biotic frontier. Bulletin of the Entomological Society of America, 29: 1419.CrossRefGoogle Scholar
Fagan, L.L. 1999. Arthropod colonization of needle litter on the ground and in the canopy of montane Abies amabilis trees on Vancouver Island, British Columbia. M.Sc. thesis, University of Victoria, Victoria, British Columbia.Google Scholar
Fagan, L.L., and Winchester, N.N. 1999. Arboreal arthropods: diversity and rates of colonization in a temperate montane forest. Selbyana, 2(1): 171178.Google Scholar
Franklin, J.F., and Van Pelt, R. 2004. Spatial aspects of structural complexity. Journal of Forestry, 102: 2227.Google Scholar
Government of Canada. 1995. Canadian biodiversity strategy. Canada's response to the Convention on Biological Diversity. Minister of Supply and Services Canada, Ottawa, Ontario.Google Scholar
Goward, T. 2003. On the vertical zonation of hair lichens (Broria) in the canopies of high elevation old growth conifer forests. The Canadian Field Naturalist, 117(1): 3943.CrossRefGoogle Scholar
Harding, L.E., and McCullum, E. 1994. Biodiversity in British Columbia: our changing environment. Canadian Wildlife Service, Environment Canada, Ottawa, Ontario.Google Scholar
Hasegawa, M. 1997. Changes in Collembola and Cryptostigmata communities during the decomposition of pine needles. Pedobiologia, 41: 190194.Google Scholar
Humble, L.M., Winchester, N.N., and Ring, R.A. 2000. The potentially rare and endangered terrestrial arthropods in British Columbia: revisiting British Columbia's biodiversity. In Proceedings of a Conference on the Biology and Management of Species and Habitats at Risk, Kamloops, British Columbia, 15–19 February 1999. Vol. 1. Edited by Darling, L.M.. British Columbia Ministry of Environment, Lands and Parks, Victoria, British Columbia. pp. 101108.Google Scholar
Luck, G.W., Daily, G.C., and Ehrlich, P.R. 2003. Population diversity and ecosystem services. Trends in Ecology and Evolution, 18(7): 331336.Google Scholar
MacArthur, R.H., and Wilson, E.O. 1967. The theory of island biogeography. Princeton University Press, Princeton, New Jersey.Google Scholar
McCune, B., Rosentreter, R., Ponzetti, J.M., and Shaw, D.C. 2000. Epiphyte habitats in an old conifer forest in western Washington, U.S.A. The Bryologist, 103: 417427.Google Scholar
Meidinger, D., and Pojar, J. 1991. Ecosystems of British Columbia. Ministry of Forests Special Report Series No. 6, Victoria, British Columbia.Google Scholar
Moffett, M.W. 2000. What's “up” A critical look at the basic terms of canopy biology. Biotropica, 32(4a): 569596.CrossRefGoogle Scholar
Moffett, M.W. 2001. The nature and limits of canopy biology. Selbyana, 22(2): 155179.Google Scholar
Moldenke, A.R., and Fichter, B.L. 1988. Invertebrates of the H.J. Andrews experimental forest, western Cascade Mountains, Oregon. IV. The oribatid mites (Acari: Crypostigmata). USDA Forest Service General Technical Report PNW-GTR-217.Google Scholar
Moldenke, A.R., and Lattin, J.D. 1990. Density and diversity of soil arthropods as — biological probes' of complex soil phenomena. The Northwest Environmental Journal, 6: 216.Google Scholar
Ozanne, C.M.P., Anhuf, D., Boulter, S.L., Keller, M., Kitching, R.L., Körner, C., Meinzer, F.C., Mitchell, A.W., Nakashizuka, T., Silva Dias, P.L., Stork, N.E., Wright, S.J., and Yoshimura, M. 2003. Biodversity meets the atmosphere: a global view of forest canopies. Science (Washington, D.C.), 301: 183186.Google Scholar
Parker, G.G., and Brown, M.J. 2000. Forest canopy stratification — is it useful? The American Naturalist, 155(4): 473484.Google Scholar
Pettersson, R.B., Ball, J.P., Renhorn, K., Essen, P., and Sjoberg, K. 1995. Invertebrate communities in boreal forest canopies as influenced by forestry and lichens with implications for passerine birds. Biological Conservation, 74: 5763.Google Scholar
Ring, R.A., and Winchester, N.N. 1996. Coastal temperate rainforest canopy access systems in British Columbia, Canada. Selbyana, 17: 2226.Google Scholar
Roslin, T. 2003. Not so quiet on the high frontier. Trends in Ecology and Evolution, 18(8): 376379.Google Scholar
Sax, D.F., and Gaines, S.D. 2003. Species diversity: from global decreases to local increases. Trends in Ecology and Evolution, 18(11): 561566.Google Scholar
Schenker, R. 1984. Spatial and seasonal distribution patterns of oribatid mites (Acari: Oribatei) in a forest soil ecosystem. Pedobiologia, 17: 305319.Google Scholar
Schowalter, T.D., and Ganio, L.M. 1998. Vertical and seasonal variation in canopy arthropod communities in an old-growth conifer forest in southwestern Washington, USA. Bulletin of Entomological Research, 88: 633640.Google Scholar
Scudder, G.G. 1994. An annotated systematic list of the potentially rare and endangered freshwater and terrestrial invertebrates in British Columbia. Journal of the Entomological Society of British Columbia, Occasional Paper 192.Google Scholar
Shaw, M., and Walter, D.E. 2003. Hallowed hide-aways: tree hollows and allied habitats as “hotspots” for early derivative mites. In Arthropods of tropical forests: spatio-temporal dynamics and resource use in the canopy. Edited by Basset, Y., Novotny, V., Miller, S.E., and Kitching, R.L.. Cambridge University Press, Cambridge. pp. 291303.Google Scholar
Southwood, T.R.E. 1996. Natural communities: structure and dynamics. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 351: 11131129.Google Scholar
Southwood, T.R.E., Brown, V.K., and Reader, P.M. 1979. The relationships of plant and insect diversities in succession. Biological Journal of the Linnean Society, 12: 327348.Google Scholar
Southwood, T.R.E., Moran, V.C., and Kennedy, C.E.J. 1982. The assessment of arboreal insect fauna: comparison of knockdown sampling and faunal lists. Ecological Entomology, 7: 331340.CrossRefGoogle Scholar
Southwood, T.R.E., Wint, W.G.R., Kennedy, C.E.J., and Greenwood, S.R. 2004. Seasonality, species richness and specificity of the phytophagous guild of insects on oak (Quercus) canopies. European Journal of Entomology, 101: 4350.Google Scholar
Spies, T.A. 1998. Forest structure: a key to the ecosystem. Northwest Science, 72(2): 3439.Google Scholar
Walter, D.E. 2004. Hidden in plain sight. Mites in the canopy. In Forest canopies. 2nd ed. Edited by Lowman, M.D. and Rinker, H.B.. Elsevier Academic Press, Burlington, Massachusetts. pp. 224241.Google Scholar
Walter, D.E., and Behan-Pelletier, V. 1999. Mites in forest canopies: filling the size distribution shortfall? Annual Review of Entomology, 44: 119.CrossRefGoogle ScholarPubMed
Walter, D.E., O'Dowd, D.J., and Barnes, V. 1994. The forgotten arthropods: foliar mites in the forest canopy. Memoirs of the Queensland Museum, 36: 221226.Google Scholar
Wallwork, J.A. 1983. Oribatids in forest ecosystems. Annual Review of Entomology, 28: 109130.Google Scholar
Wardle, D.A., Yeates, G.W., Barker, G.M., Bellingham, P.J., Bonner, K.I., and Williamson, W.M. 2003. Island biology and ecosystem functioning in epiphytic soil communities. Science (Washington, D.C.), 301: 17171720.Google Scholar
Winchester, N.N. 1997. Canopy arthropods of coastal Sitka spruce trees on Vancouver Island, British Columbia, Canada. In Canopy arthropods. Edited by Stork, N.E., Adis, J., and Didham, R.K.. Chapman and Hall, London. pp. 151168.Google Scholar
Winchester, N.N. 2002. Canopy micro-arthropod diversity: suspended soil exploration. In The Global canopy handbook. Edited by Mitchell, A.W., Secoy, K., and Jackson, T.. Global Canopy Programme, Halifax House, Oxford University, Oxford. pp. 140144.Google Scholar
Winchester, N.N., and Behan-Pelletier, V.M. 2003. Fauna of suspended soils in an Ongokea gore tree in Gabon. In Arthropods of tropical forests: spatio-temporal dynamics and resource use in the canopy. Edited by Basset, Y., Novotny, V., Miller, S.E., and Kitching, R.L.. Cambridge University Press, Cambridge. pp. 102109.Google Scholar
Winchester, N.N., and Ring, R.A. 1996 a. Centinelan extinctions: extirpation of northern temperate old-growth rainforest arthropod communities. Selbyana, 17: 5057.Google Scholar
Winchester, N.N., and Ring, R.A. 1996 b. Northern temperate coastal Sitka spruce forests with special emphasis on canopies: studying arthropods in an unexplored frontier. Northwest Science, 70: 94103.Google Scholar
Winchester, N.N., and Ring, R.A. 1999. The bio-diversity of arthropods from northern temperate ancient coastal rainforests: conservation lessons from the high canopy. Selbyana, 20(2): 268275.Google Scholar
Winchester, N.N., Behan-Pelletier, V.M., and Ring, R.A. 1999. Arboreal specificity, diversity and abundance of canopy-dwelling oribatid mites (Acari: Oribatida). Pedobiologia, 43: 391400.Google Scholar
Woltemade, H. 1982. Zur ökologie baumrindenbewohnender hornmilben (Acari, Oribatei). Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin, 22: 118139.Google Scholar