Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T19:52:29.776Z Has data issue: false hasContentIssue false

Analysis of cuticular hydrocarbons in two Anagrus species (Hymenoptera: Mymaridae) as a tool to improve their correct identification

Published online by Cambridge University Press:  02 April 2012

Chiara Floreani
Affiliation:
Dipartmento di Biologia Applicata alla Difesa della Piante, Università degli Studi di Udine, Via delle Scienze 208, 33100 Udine, Italy
Francesco Pavan*
Affiliation:
Dipartmento di Biologia Applicata alla Difesa della Piante, Università degli Studi di Udine, Via delle Scienze 208, 33100 Udine, Italy
Francesco Nazzi
Affiliation:
Dipartmento di Biologia Applicata alla Difesa della Piante, Università degli Studi di Udine, Via delle Scienze 208, 33100 Udine, Italy
*
1 Corresponding author (e-mail: [email protected]).

Abstract

Male and female adult wasps belonging to the atomus group of the genus Anagrus Haliday, classified according to morphological techniques, were analyzed for their cuticular hydrocarbons to detect any possible differences between species. Most female specimens that were identified as either A. atomus L. or A. ustulatus Haliday, using morphological and morphometrical characters, showed two distinct cuticular hydrocarbon profiles. These profiles seemed to be independent of the plants the insects were collected from, the potential leafhopper host species (Hemiptera: Cicadellidae), and the emergence period, and they were largely consistent with classification based on morphology. Both A. atomus and A. ustulatus females were shown to emerge from leafhopper eggs found on Vitis vinifera L. (Vitaceae). Males, for which conclusive diagnostic characters are not yet available, showed the same two cuticular hydrocarbon patterns observed in females; on average, specimens displaying one hydrocarbon profile differed from those showing the other profile in three characters used for morphometrical analysis.

Résumé

Nous avons analysé les hydrocarbures de la cuticule chez des adultes mâles et femelles de guêpes Anagrus Haliday classées au moyen de techniques morphologiques dans le groupe atomus, afin de déceler les différences spécifiques possibles. On trouve deux patrons distincts d'hydrocarbures cuticulaires chez la plupart des spécimens femelles identifiées comme A. atomus L. ou A. ustulatus Haliday à partir de critères morphologiques et morphométriques. Ces patrons semblent indépendants des plantes sur lesquelles les insectes ont été récoltés, de l'espèce de cicadelle (Hemiptera : Cicadellidae) qui sert d'hôte potentiel et de la période d'émergence; ils correspondent en grande mesure à la classification basée sur la morphologie. Les femelles d'A. atomus et d'A. ustulatus émergent toutes les deux des oeufs de cicadelles vivant sur Vitis vinifera L. (Vitaceae). Les mâles, pour lesquels il n'existe pas encore de caractères diagnostiques décisifs, possèdent les deux mêmes patrons d'hydrocarbures cuticulaires que les femelles; en moyenne, les spécimens ayant l'un des profils d'hydrocarbures diffèrent de ceux qui ont l'autre profil par trois caractères utilisés dans l'analyse morphométrique.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Böll, S., and Schwappach, P. 2003. Species spectrum, dominance relationships and population dynamics of egg parasitoids (Mymaridae) of the grape leafhopper (Empoasca vitis Goethe) in the Franconian wine region. IOBC/wprs Bulletin, 26(4): 173180.Google Scholar
Cerutti, F., Baumgärtner, J., and Delucchi, V. 1991. The dynamics of grape leafhopper Empoasca vitis Göthe populations in southern Switzerland and the implications for habitat management. Biocontrol Science and Technology, 1: 177194.CrossRefGoogle Scholar
Chiappini, E. 1987. Ricerche sulla variabilità di Anagrus atomus (L.) (Hymenoptera Mymaridae) e di una specie affine presente sul rovo. Bollettino di Zoologia Agraria e di Bachicoltura, 19(II): 7197.Google Scholar
Chiappini, E. 1989. Review of the European species of genus Anagrus Haliday (Hymenoptera Chalcidoidea). Bollettino di Zoologia Agraria e di Bachicoltura, 21(II): 85119.Google Scholar
Chiappini, E., and Lin, N.Q. 1998. Anagrus (Hymenoptera: Mymaridae) of China, with descriptions of nine new species. Annals of the Entomological Society of America, 91(5): 549571.CrossRefGoogle Scholar
Chiappini, E., and Mazzoni, E. 2000. Differing morphology and ultrastructure of the male copulatory apparatus in species-groups of Anagrus Haliday (Hymenoptera: Mymaridae). Journal of Natural History, 34: 16611676.CrossRefGoogle Scholar
Chiappini, E., and Triapitsyn, S.V. 1999. Redescription of Anagrus avalae Soyka (Hymenoptera: Mymaridae), with new synonymies. Frustula Entomologica, 20(33): 119126.Google Scholar
Chiappini, E., Triapitsyn, S.V., and Donev, A. 1996. Key to the Holarctic species of Anagrus Haliday (Hymenoptera Mymaridae) with a review of the Nearctic and Palearctic (other than European) species and descriptions of new taxa. Journal of Natural History, 30: 551595.CrossRefGoogle Scholar
Chiappini, E., Soressi, L., Fogher, C., and Zanirato, M. 1999. Genetic identity and relationship between four Anagrus species (Hymenoptera: Mymaridae) using RAPD analysis. European Journal of Entomology, 96(4): 393400.Google Scholar
Doutt, R.L., and Nakata, J. 1973. The Rubus leafhopper and its egg parasitoid: an endemic biotic system useful in grape-pest management. Environmental Entomology, 2(3): 381386.CrossRefGoogle Scholar
Huber, J.T. 1986. Systematics, biology, and hosts of the Mymaridae and Mymarommatidae (Insecta: Hymenoptera): 1758–1984. Entomography, 4: 185243.Google Scholar
Kazmer, D.J. 1991. Isoelectric focusing procedures for the analysis of allozymic variation in minute arthropods. Annals of the Entomological Society of America, 84(3): 332339.CrossRefGoogle Scholar
Lockey, K.H. 1991. Insect hydrocarbon classes: implications for chemotaxonomy. Insect Biochemistry, 21(1): 9197.CrossRefGoogle Scholar
Murphy, B.C., Rosenheim, J.A., Dowell, R.V., and Granett, J. 1998. Habitat diversification tactic for improving biological control: parasitism of the western grape leafhopper. Entomologia Experimentalis et Applicata, 87: 225235.CrossRefGoogle Scholar
Pavan, F., and Picotti, P. 1993. Dinamica di popolazione di Empoasca vitis (Göthe) (Homoptera Cicadellidae) e del suo parassitoide oofago Anagrus atomus (Linnaeus) (Hymenoptera Mymaridae) in vigneti ed actinidieti contigui. Memorie della Società Entomologica Italiana, 72: 163173.Google Scholar
Triapitsyn, S.V. 1998. Anagrus (Hymenoptera: Mymaridae) egg parasitoids of Erythroneura spp., and other leafhoppers (Homoptera: Cicadellidae) in North American vineyards and orchards: a taxonomic review. Transactions of the American Entomological Society, 124(2): 77112.Google Scholar
Triapitsyn, S.V. 2001. Review of the Australasian species of Anagrus (Hymenoptera Mymaridae). Belgian Journal of Entomology, 3(2): 267289.Google Scholar
Triapitsyn, S.V., and Beardsley, J.W. 2000. A review of the Hawaiian species of Anagrus (Hymenoptera: Mymaridae). Proceedings of the Hawaiian Entomological Society, 34: 2348.Google Scholar
Vidano, C., Arnò, C., and Alma, A. 1988. On the Empoasca vitis intervention threshold on vine (Rhynchota, Auchenorrhyncha). In Proceedings of the 6th Auchenorrhyncha Meeting, Turin, Italy, 7– 11 Sept. 1987. Edited by Vidano, C. and Arzone, A.. University of Turin, Italy. pp. 525537.Google Scholar
Viggiani, G. 1970. Ricerche sugli Hymenoptera Chalcidoidea. XXIV. Sul valore tassonomico dell'organo copulatore nei Mimaridi del genere Anagrus Haliday. Bollettino del Laboratorio di Entomologia agraria Filippo Silvestri, 28: 1018.Google Scholar
Viggiani, G. 2003. Functional biodiversity for the vineyard agroecosystem: aspects of the farm and landscape management in Southern Italy. IOBC/wprs Bulletin, 26 (4): 197202.Google Scholar
Viggiani, G., and Jesu, R. 2003. Preliminary notes on the biodiversity of egg parasitoids (Hymenoptera: Mymaridae and Trichogrammatidae) in vineyards of Southern Italy. IOBC/wprs Bulletin, 26(8): 217220.Google Scholar
Viggiani, G., Jesu, R., and Sasso, R. 2004. Cicaline della vite e loro ooparassitoidi in vigneti del Sud Italia. Bollettino del Laboratorio di Entomologia agraria Filippo Silvestri, 59(2003): 331.Google Scholar
Waloff, N., and Jervis, M.A. 1987. Communities of parasitoids associated with leafhoppers and planthoppers in Europe. Advances in Ecological Research, 17: 281402.CrossRefGoogle Scholar
Witsack, W. 1973. Zur Biologie und Ökologie in Zikadeneiern parasitierender Mymariden der Gattung Anagrus (Chalcidoidea, Hymenoptera). [On the biology and ecology of Mymaridae of the genus Anagrus (Chalcidoidea, Hymenoptera) parasiting in the eggs of leafhoppers (Auchenorryncha, Homoptera).] Zoologische Jahrbücher Abteilung für Systematik Ökologie und Geographie der Tiere, 100: 223299.Google Scholar