Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T07:10:29.842Z Has data issue: false hasContentIssue false

AMPLIFIED MITOCHONDRIAL DNA AS A DIAGNOSTIC MARKER FOR SPECIES OF CONIFER-FEEDING CHORISTONEURA (LEPIDOPTERA: TORTRICIDAE)

Published online by Cambridge University Press:  31 May 2012

Felix A.H. Sperling
Affiliation:
Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
Donal A. Hickey
Affiliation:
Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We describe a method for identifying conifer-feeding species and lineages of Choristoneura Lederer in Canada and Alaska. The method relies on amplification of mitochondrial (mt) DNA by the polymerase chain reaction (PCR); amplified DNA is then digested with restriction enzymes to give characteristic DNA fragment patterns. We used the cytochrome oxidase I and II genes of mtDNA, which were previously shown to contain numerous nucleotide differences at the level of species. Ten restriction enzymes were surveyed and a combination of two of these (EcoR V + Hinf I) was sufficient to distinguish the major mtDNA lineages. Choristoneura fumiferana (Clemens), C. pinus Freeman, and C. rosaceana (Harris) were readily distinguished from each other and from an assemblage of three putative western species (C. occidentalis Freeman. C. orae Freeman, and C. biennis Freeman). The three western species have the same mtDNA marker pattern in most individuals and, although ecologically differentiated, their populations may actually be conspecific. At one locality in Alaska, pheromone traps bailed with lures for C. fumiferana attract moths with C. fumiferana mtDNA, and lures for C. orae attract moths with mtDNA that is characteristic of the western assemblage. This demonstrates geographic overlap of genetically distinct species in Alaska. The same two separate mtDNA lineages co-occur at two localities in Alberta, but pheromone attraction is unknown. In British Columbia, populations identified as C. biennis and C. occidentalis contain a few individuals with divergent mtDNA genotypes, the significance of which remains unclear. Amplified mtDNA thus provides a convenient, reliable marker for surveying genetic variation within species and for studying interactions among species of the C. fumiferana group.

Résumé

Nous décrivons ici une méthode d’identification des espèces et des lignées de Choristoneura Lederer parasites des conifères au Canada et en Alaska. La méthode est basée sur l’amplification en chaîne des segments d’ADN mitochondrial (mt) par la polymérase : l’ADN amplifié est ensuite digéré par des enzymes de restriction, ce qui permet de reconnaître les fragments caractéristiques d’ADN. Nous avons utilisé les gènes cytochrome oxydase I et II de l’ADNmt, dans lesquels de nombreux nucléotides diffèrent selon l’espèce. Dix enzymes de restriction ont été utilisés et la combinaison de deux d’entre eux (EcoR V + Hinf I) s’est avérée suffisante pour distinguer la plupart des lignées d’ADNmt. Choristoneura fumiferana (Clemens). C. pinus Freeman et C. rosaceana (Harris) se distinguent facilement l’une de l’autre et se distinguent aussi d’un ensemble de trois espèces probables de l’ouest (C. occidentalis Freeman, C. orae, Freeman et C. biennis Freeman). Les individus des trois espèces de l’ouest possèdent les mêmes fragments d’ADNmt et il est possible que les diverses populations, bien qu’écologiquement différentes, soient conspécifiques. À un endroit en Alaska, des pièges à phéromone ont été garnis de substances propres à attirer des C. fumiferana et ces pièges ont attiré des papillons à ADNmt de C. fumiferana; les pièges garnis de substances propres à attirer des C. orae ont attiré des papillons à ADNmt caractéristique du groupe des espèces de l’ouest. Il y a donc chevauchement géographique d’espèces génétiquement distinctes en Alaska. Les deux mêmes lignées d’ADNmt se retrouvent en deux localités d’Alberta, mais l’effet des phéromones à ces endroits est inconnu. En Colombie-Britannique, les populations identifiées comme C. biennis et C. occidentalis contiennent quelques individus à génotypes d’ADNmt différents, un phénomène qui reste inexpliqué. L’ADNmt amplifié est donc un marqueur commode et fiable dans les études de la variation génétique chez les diverses espèces et des interactions entre espèces au sein du groupe C. fumiferana.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1995

References

Avise, J.C. 1991. Ten unorthodox perspectives on evolution prompted by comparative population genetic findings on mitochondrial DNA. Annual Review of Genetics 25: 4569.CrossRefGoogle ScholarPubMed
Bogdanowicz, S.M., Wallner, W.E., Bell, J., Odell, T.M., and Harrison, R.G.. 1993. Asian gypsy moths (Lepidoptera: Lymantriidae) in North America: Evidence from molecular data. Annals of the Entomological Society of America 86: 710715.Google Scholar
Boyce, T.M., Zwick, M.E., and Aquadro, C.F.. 1994. Mitochondrial DNA in the bark weevils: Phylogeny and evolution in the Pissodes strobi species group (Coleoptera: Curculionidae). Molecular Biology and Evolution 11: 183194.Google Scholar
Dang, P.T. 1992. Morphological study of male genitalia with phylogenetic inference of Choristoneura Lederer (Lepidoptera: Tortricidae). The Canadian Entomologist 124: 748.CrossRefGoogle Scholar
Gray, T.G., and Gries, G.. 1993. Sex pheromone components of an undescribed Choristoneura species (Lepidoptera: Tortricidae) on lodgepole pine in British Columbia. Journal of the Entomological Society of British Columbia 90: 1318.Google Scholar
Gray, T.G., and Slessor, K.N.. 1989. Morphology, life history and identification of sex pheromone components of an undescribed species of Choristoneura (Lepidoptera: Tortricidae) on Scots pine in British Columbia. Journal of the Entomological Society of British Columbia 86: 3947.Google Scholar
Hall, H.G., and Smith, D.R., 1991. Distinguishing African and European honeybee matrilines using amplified mitochondrial DNA. Proceedings of the National Academy of Sciences, USA 88: 45484552.CrossRefGoogle ScholarPubMed
Harrison, R.G., Rand, D.M., and Wheeler, W.C.. 1987. Mitochondrial DNA variation in field crickets across a narrow hybrid zone. Molecular Biology and Evolution 4: 144158.Google Scholar
Harvey, G.T. 1985. The taxonomy of the coniferophagous Choristoneura (Lepidoptera Tortricidae): A review. pp. 16–48 in Sanders, C.J., Stark, R.W., Mullins, E.J., and Murphy, J. (Eds.), Recent Advances in Spruce Budworms Research, Proceedings of the CANUSA Spruce Budworms Research Symposium, Bangor, Maine, 16–20 Sept. 1984. Canadian Forestry Service, Ottawa. 527 pp.Google Scholar
Hurst, L.D., and Hoekstra, R.F.. 1994. Shellfish genes kept in line. Nature 368: 811812.CrossRefGoogle ScholarPubMed
Martin, A.P., and Simon, C.M.. 1990. Differing levels of among-population divergence in the mitochondrial DNA of 13- versus 17-year periodical cicadas related to historical biogeography. Evolution 44: 10661088.Google Scholar
Moody, B.H. 1992. Forest Insect and Disease Conditions in Canada. 1989. Supply and Services Canada. Catalogue Fo21–1/1989E.Google Scholar
Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York, NY. 512 pp.CrossRefGoogle Scholar
Nei, M., and Tajima, F.. 1983. Maximum likelihood estimation of the number of nucleotide substitutions from restriction sites data. Genetics 105: 207217.Google Scholar
Otvos, I.S. 1991. North American species in forestry. pp. 719–756 in van der Geest, L.P.S., and Evenhuis, H.H. (Eds.), Tortricid Pests, Their Biology, Natural Enemies and Control. Elsevier Science Publishers, Amsterdam, The Netherlands. 808 pp.Google Scholar
Powell, J.A. 1980. Nomenclature of nearctic conifer-feeding Choristoneura (Lepidoptera: Tortricidae): Historical review and present status. United States Department of Agriculture Forest Service, Pacific Northwest Forest and Range Experiment Station, Portland, Oregon. General Technical Report PNW–100: 18 pp.Google Scholar
Sambrook, J., Fritsch, E.F., and Maniatis, T.. 1989. Molecular Cloning: A Laboratory Manual. Volume 1. Cold Spring Harbour Laboratory Press, New York, NY. 629 pp.Google Scholar
Sanders, C.J., Stark, R.W., Mullins, E.J., and Murphy, J. (Eds.). 1985. Recent Advances in Spruce Budworms Research, Proceedings of the CANUSA Spruce Budworms Research Symposium, Bangor, Maine, 16–20 Sept. 1984. Canadian Forestry Service, Ottawa. 527 pp.Google Scholar
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P.. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87: 651701.CrossRefGoogle Scholar
Simon, C., McIntosh, C., and Deniega, J.. 1993. Standard restriction fragment analysis of the mitochondrial genome is not sensitive enough for phylogenetic analysis or identification of 17-year periodical cicada broods (Hemiptera: Cicadelidae): The potential for a new technique. Annals of the Entomological Society of America 86: 228238.CrossRefGoogle Scholar
Sperling, F.A.H. 1993. Mitochondrial DNA variation and Haldane's rule in the Papilio glaucus and P. troilus species groups. Heredity 70: 227233.CrossRefGoogle Scholar
Sperling, F.A.H. 1994. Sex-linked genes and species differences in Lepidoptera. The Canadian Entomologist 126: 807818.CrossRefGoogle Scholar
Sperling, F.A.H., and Harrison, R.G.. 1994. Mitochondrial DNA variation within and between species of the Papilio machaon group of swallowtail butterflies. Evolution 48: 408422.Google Scholar
Sperling, F.A.H., and Hickey, D.A.. 1994. Mitochondrial DNA sequence variation in the spruce budworm species complex (Choristoneura: Lepidoptera). Molecular Biology and Evolution 11: 656665.Google ScholarPubMed
Stock, M.W., and Castrovillo, P.J.. 1981. Genetic relationships among respresentative populations of five Choristoneura species: C. occidentalis, C. retiniana, C. biennis, C. lambertiana, and C. fumiferana (Lepidoptera: Tortricidae). The Canadian Entomologist 113: 857865.CrossRefGoogle Scholar
Swofford, D.L. 1993. PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1. Computer program distributed by the Illinois Natural History Survey, Champaign, IL.Google Scholar
Vogler, A.P., DeSalle, R., Assman, T., Knisley, C.B., and Schulz, T.D.. 1993. Molecular population genetics of the endangered tiger beetle Cicindela dorsalis (Coleoptera: Cicindela). Annals of the Entomological Society of America 86: 142152.CrossRefGoogle Scholar
Volney, W.J.A. 1989. Biology and dynamics of North American coniferophagous Choristoneura populations. Agricultural Zoology Reviews 3: 133156.Google Scholar