Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T03:39:54.471Z Has data issue: false hasContentIssue false

ADULT LONGEVITY, FECUNDITY, AND POPULATION GROWTH RATES FOR TRIALEURODES RICINI MISRA (HOMOPTERA: ALEYRODIDAE) AT DIFFERENT CONSTANT TEMPERATURES

Published online by Cambridge University Press:  31 May 2012

P. Shishehbor
Affiliation:
Department of Environmental Resource Management, University College Dublin, Belfield, Dublin 4, Ireland
P.A. Brennan
Affiliation:
Department of Environmental Resource Management, University College Dublin, Belfield, Dublin 4, Ireland

Abstract

Longevity and reproductive potential of adult males and females of Trialeurodes ricini Misra were determined under laboratory conditions at four constant temperatures (20, 25, 30, and 35 ± 1°C). The resulting data were used to calculate life tables and rates of increase at each temperature. Females of T. ricini oviposited means of 183, 224, 294, and 132 eggs at 20, 25, 30, and 35°C, respectively, and had a mean longevity of 38.52, 28.15, 15.78, and 10.11 days at the same four temperatures. The net reproductive rate was 49.92, 72.26, 111.08, and 38.44, and the daily intrinsic rate of increase was 0,05, 0.11, 0.18, and 0.15 at 20, 25, 30, and 35 °C, respectively. Generation times decreased from 69.88 to 24.92 days with increasing temperature. The results indicate that T. ricini can, in otherwise unlimited conditions, persist and increase in numbers within the range 20–35°C.

Résumé

L’effet de températures choisies (20, 25, 30 et 35 ± 1°C) sur la longévité et la fécondité de Trialeurodes ricini Misra a été étudié en laboratoire en utilisant le ricin, Ricinus communis L., comme plant-hôte. L’aleurode vit en moyenne 38,52, 28,15, 15,78 et 10,11 jours et pond 183, 224, 294 et 132 oeufs à 20, 25, 30 et 35°C respectivement. La durée de la période d’oviposition diminue et le nombre d’oeufs pondus augmente avec la temperature. A 20, 25, 30 et 35 °C, les taux intrinsèques de croissance sont de 0,05, 0,11, 0,18 et 0,15 par jour. Les taux nets de reproduction sont de 49,92, 72,26, 111,08 et 38,44 et les intervalles moyens de génération sont de 69,88, 38,69, 25,05 et 24,92 jours respectivement.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrewartha, H.G., and Birch, L.C.. 1954. The Distribution and Abundance of Animals. The University of Chicago Press, Chicago, IL. 782 pp.Google Scholar
Ayyar, T.V.R. 1935. The important insect pests of the castor oil plant in S. India with suggestions for their control. Madras Agricultural Journal 23: 479485.Google Scholar
Bink-Moenen, R.M. 1983. Revision of the African whiteflies (Aleyrodidae), mainly based on a collection from Tchad. Monografieen van de Nederlandse Entomologische Verenging 10: 1211.Google Scholar
Birch, L.C. 1948. The intrinsic rate of natural increase of an insect population. Journal of Animal Ecology 17: 1526.CrossRefGoogle Scholar
Dorsman, R., and van de Vrie, M.. 1987. Population dynamics of the greenhouse whitefly Trialeurodes vaporariorum on different gerbera varieties. Bulletin of the International Organisation for Biological Control, West Palearctic Regional Section XI 2: 4651.Google Scholar
Gutierrez, A.P., Butler, G.D., Wang, Y., and Westphal, D.. 1977. The interaction of pink bollworm (Lepidoptera: Gelechidae), cotton, and weather: A detailed model. The Canadian Entomologist 109: 14571468.CrossRefGoogle Scholar
Iheagwam, E. 1980. Influence of host plant (Brassica species) and temperature on population increase of the cabbage whitefly Aleyrodes brassicae. Annals of Applied Biology 95: 273278.CrossRefGoogle Scholar
Iheagwam, E. 1981. Influence of cabbage Brassica oleracea varieties and temperature on population variables of the cabbage whitefly Aleyrodes brassicae. OIKOS 36: 233237.CrossRefGoogle Scholar
Khalifa, A., and El-Khadir, E.. 1964. Biological study on Trialeurodes lubia and Bemisia tabaci (Aleyrodidae). Bulletine Society Entomologique Egypte 48: 115129.Google Scholar
Krebs, C.J. 1985. Ecology, the Experimental Analysis of Distribution and Abundance. Harper & Row, New York, NY. 801 pp.Google Scholar
Lewis, T. 1973. Thrips: Their Biology, Ecology and Economic Importance. Academic Press, London. 349 pp.Google Scholar
Madueke, E.D.N. 1979. Biological Control of Trialeurodes vaporariorum. Ph.D. thesis, University of Cambridge. 185 pp.Google Scholar
Mound, L.A., and Halsey, S.H.. 1978. Whitefly of the World. Wiley, New York, NY. 340 pp.Google Scholar
Nayar, K.K. 1986. General and Applied Entomology. Mc-Graw Hill, New Delhi. 592 pp.Google Scholar
Patel, M.M., Naik, M.M., Vyas, H.N., and Patel, A.T.. 1986. Evaluation of certain insecticides against whitefly (Trialeurodes ricini Misra) and the Jassid (Empoasca keri Pruthi) infesting castor. Indian Journal of Plant Protection 14: 8182.Google Scholar
Powell, D.A., and Bellows, T.S. Jr., 1992. Adult longevity, fertility and population growth rates for Bemisia tabaci on two host plant species. Journal of Applied Entomology 113: 6878.CrossRefGoogle Scholar
Shishehbor, P. 1994. Investigations on the Morphology, Biology and Ecology of the Castor Whitefly Trialeurodes ricini Misra (Homoptera: Aleyrodidae). Ph.D. thesis, University College Dublin. 217 pp.Google Scholar
Southwood, T.R.E. 1978. Ecological Methods, with Particular Reference to the Study of Insect Populations. Chapman and Hall, London. 524 pp.Google Scholar
Trehan, K.N. 1956. Brief notes on crop pests and their control in the Punjab (India). Journal of Bombay Natural History Society 54: 581626.Google Scholar