Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T06:07:21.589Z Has data issue: false hasContentIssue false

Actual and potential distribution of Acrolepiopsis assectella (Lepidoptera: Acrolepiidae), an invasive alien pest of Allium spp. in Canada

Published online by Cambridge University Press:  03 January 2012

P.G. Mason*
Affiliation:
Agriculture and Agri-Food Canada, Research Centre, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario, Canada K1A 0C6
R.M. Weiss
Affiliation:
Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2
O. Olfert
Affiliation:
Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2
M. Appleby
Affiliation:
Ontario Ministry of Agriculture, Food and Rural Affairs, 95 Dundas Street, Brighton, Ontario, Canada K0K 1H0
J.-F. Landry
Affiliation:
Agriculture and Agri-Food Canada, Research Centre, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario, Canada K1A 0C6
*
1Corresponding author (e-mail: [email protected]).

Abstract

Acrolepiopsis assectella (Zeller), leek moth, is a widespread and common pest of species of Allium L. (Liliaceae) in the western Palaearctic subregion. The establishment of A. assectella in eastern North America has resulted in economic losses to garlic (Allium sativum L.), leek (Allium porrum L.), and onion (Allium cepa L.) growers, especially to organic producers in eastern Ontario and southern Quebec. Acrolepiopsis assectella was first recorded in the Ottawa area in 1993. By 2010, A. assectella had expanded its range into eastern Ontario, southwestern Quebec, Prince Edward Island, and New York. A bioclimate model, using CLIMEX simulation software, was developed to produce mapped results that closely approximated known distributions for A. assectella in central Europe. This model was then validated with recorded distribution records in eastern Europe, Asia, and North America. Model output predicted that A. assectella will readily survive in southeastern Canada and the eastern United States of America. Other areas potentially suitable for A. assectella include coastal regions of the Pacific Northwest, the interior of southern British Columbia, and north-central Mexico. The continued range expansion of A. assectella into other Allium-growing areas of eastern North America appears to be inevitable. Establishment in these areas presents the risk of substantial production losses to Allium spp. producers.

Résumé

La teigne du poireau, Acrolepiopsis assectella (Zeller), est un ravageur répandu et commun de nombreuses espèces du genre Allium L. (Liliaceae) dans la portion occidentale de la région paléarctique. Depuis son établissement dans l’est de l’Amérique du Nord, cette espèce a infligé des pertes économiques considérables aux producteurs d’ail (Allium sativum L.), de poireau (Allium porrum L.) et d’oignon (Allium cepa L.) et, en particulier, aux producteurs biologiques de l’est de l’Ontario et du sud du Québec. L’A. assectella a été détecté pour la première fois dans la région d’Ottawa en 1993. En 2009, son aire de répartition couvrait tout l’est de l’Ontario, le sud-ouest du Québec, l’Île-du-Prince-Édouard et l’État de New York. À l’aide d’un modèle bioclimatique produit à l’aide du logiciel de simulation CLIMEX, nous avons établi une carte de répartition qui correspond de près à la situation connue du ravageur en Europe centrale. Ce modèle a ensuite été validé avec des mentions de répartition d’Europe de l’Est, d’Asie et d’Amérique du Nord. D’après les sorties du modèle, l’A. assectella devrait survivre sans difficulté dans le sud-est du Canada et l’est des États-Unis. La côte nord-ouest du Pacifique, l’intérieur de la Colombie-Britannique et le centre-nord du Mexique sont également considérés comme favorables à son établissement. L’expansion de l’A. assectella dans d’autres régions productrices d’Allium spp. de l’est de l’Amérique du Nord semble inévitable et risque d’entraîner des pertes substantielles pour les producteurs d’Allium spp.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abo-Ghalia, A., and Thibout, E. 1982. Fréquence de la diapause reproductrice en fonction de l'évolution de la photopériode à températures constantes et recherche du stade sensible chez une souche d'Acrolepiopsis assectella (Lepidoptera, Hyponomeutoidea). Annales de la Société Entomologique de France, 18: 173179.Google Scholar
Abo-Ghalia, A., and Thibout, E. 1983 a. Action du poireau (Allium porrum) sur l'activité reproductrice après la diapause imaginale chez le teigne du poireau, Acrolepiopsis assectella. Entomologia Experimentalis et Applicata, 33: 188194. doi:10. 1051/agro:19830802.CrossRefGoogle Scholar
Abo-Ghalia, A., and Thibout, E. 1983 b. Levée de la diapause imaginale et reprise de l'activité sexuelle chez la teigne du poireau (Acrolepiopsis assectella) Zell. (Lepidoptera). Agronomie, 3: 717722.CrossRefGoogle Scholar
Allen, J., Fraser, H., and Appleby, M. 2008. Leek moth — a pest of Allium crops. Factsheet Agdex #625/252 [online]. Available from http://www.omafra.gov.on.ca/english/crops/facts/08-009.htm [accessed 5 February 2010].Google Scholar
Allison, J., Jenner, W., Cappuccino, N., and Mason, P.G. 2007. Oviposition and feeding preference of Acrolepiopsis assectella Zell. (Lep., Acrolepiidae). Journal of Applied Entomology, 131: 690697. doi:10.1111/j.1439-0418.2007.01170.x.Google Scholar
Andrewartha, H.G., and Birch, L.E. 1954. The distribution and abundance of animals. University of Chicago Press, Chicago.Google Scholar
Åsman, K. 2001. Effect of temperature on development and activity periods of the leek moth Acrolepiopsis assectella Zell. (Lep., Acrolepiidae). Journal of Applied Entomology, 125: 361364. doi:10.1046/j.1439-0418.2001.00558.x.CrossRefGoogle Scholar
Baskerville, G.L., and Emin, P. 1969. Rapid estimation of heat accumulation from maximum and minimumtemperatures. Ecology, 50: 514517. doi: 10.2307/1933912.Google Scholar
Bouchet, J. 1973. La prevision des attaques de la teigne du poireau a la station d'avertissements agricoles des pays de la Loire. Phytoma-Défense des Cultures, 25: 2428.Google Scholar
Canadian Food Inspection Agency. 2009. Leek moth (Acrolepiopsis assectella) [online]. Available from http://www.inspection.gc.ca/english/plaveg/pestrava/surv/sit2008e.shtml#acrass [accessed 5 February 2010].Google Scholar
Fauna Europaea. 2010. Distribution of Acrolepiopsis assectella (Zeller) [online]. Available from http://www.faunaeur.org/Maps/display_map.php?map_name5euro&_language5en&taxon 1=359590 [accessed 10 February 2010].Google Scholar
Handfield, L., Landry, J.-F., Landry, B., and Lafontaine, J.D. 1997. Liste des lépidoptéres du Québec et du Labrador. Fabreries, Supplément 7.Google Scholar
Hearne Scientific Software. 2010. CLIMEX 3.0.2. Hearne Scientific Software Pty Ltd., Melbourne, Australia [online]. Available from http://www.hearne.com.au/products/climex/edition/climex3/ [accessed 17 November 2010].Google Scholar
Jary, S.G., and Rolfe, S.W. 1945. The leek moth. Agriculture, 52: 3537.Google Scholar
Jenner, W., and Kuhlmann, U. 2004. Biological control of leek moth, Acrolepiopsis assectella. Annual Report 2004/2005, CABI Bioscience Switzerland Centre, Delémont, Switzerland.Google Scholar
Jenner, W.H., Kuhlmann, U., Mason, P.G., and Cappuccino, N. 2010 a. Comparative life tables of leek moth, Acrolepiopsis assectella (Zeller) (Lepidoptera: Acrolepiidae), in its native range. Bulletin of Entomological Research, 100: 8797. doi:10.1017/S0007485309006804. PMID:19323855.Google Scholar
Jenner, W.H., Mason, P.G., Cappuccino, N., and Kuhlmann, U. 2010 b. Native range assessment of classical biological control agents: impact of Inundative releases as pre-introduction evaluation. Bulletin of Entomological Research, 100: 387394. doi:10.1017/S0007485309990368. PMID:19814849.Google Scholar
Jeschke, J.M., and Strayer, D.I. 2008. Usefulness of bioclimatic models for studying climate change and invasive species. Annals of the New York Academy of Science, 1143: 124. doi:10.1196/annals.1439.002. PMID:19076341.Google Scholar
Klass, C. 2009. Leek moth found in NY [online]. Available from http://blogs.cce.cornell.edu/community-horticulture/2009/09/08/leek-moth-found-in-ny/ [accessed 26 November 2009].Google Scholar
Landry, J.-F. 2007. Taxonomic review of the leek moth genus Acrolepiopsis (Lepidoptera: Acrolepiidae) in North America. The Canadian Entomologist, 139: 319353. doi:10.4039/N06-098.Google Scholar
Lecomte, C. 1976. Premiéres observations sur la biologie et les dégâts de la teigne du poireau Acrolepiopsis (Acrolepia) assectella Zeller (Microlépidoptère Plutellidae) sur le littoral algérois. Bulletin de la Société d'Histoire Naturelle de l'Afrique du Nord, 67: 4956.Google Scholar
Markula, M. 1981. Pests of cultivated plants in Finland in 1980. Annales Agriculturae Fenniae, 20: 2527.Google Scholar
Mason, P.G., Olfert, O., Sluchinski, L., Weiss, R.M., Boudreault, C., Grossrieder, M., and Kuhlmann, U. 2003. Actual and potential distribution of an invasive canola pest, Meligethes viridescens (Coleoptera: Nitidulidae), in Canada. The Canadian Entomologist, 135: 405413. doi:10.4039/N02-046.Google Scholar
Mason, P.G., Appleby, M., Juneja, S., Allen, J., and Landry, J.-F. 2010. Biology and development of leek moth, Acrolepiopsis assectella (Lepidoptera: Acrolepiidae), in eastern Ontario. The Canadian Entomologist, 142: 393404.CrossRefGoogle Scholar
Muñoz, M.E.S., Giovanni, R., Siqueira, M.F., Sutton, T., Brewer, P., Pereira, R.S. et al. . 2011. Open Modeller: a generic approach to species' potential distribution modelling. GeoInformatica, 15: 111135. doi: 10.1007/s10707-009-0090-7.CrossRefGoogle Scholar
New, M., Hulme, M., and Jones, P.D. 1999. Representing twentieth century space–time climate variability. Part 1: development of a 1961-90 mean monthly terrestrial climatology. Journal of Climate, 12: 829856. doi:10.1175/1520-0442 (1999)012 <0829:RTCSTC>2.0.CO;2.Google Scholar
Olfert, O., Weiss, R.M., Woods, S., Philip, H., and Dosdall, L. 2004. Potential distribution and relative abundance of an invasive cereal crop pest, Oulema melanopus L. (Coleoptera: Chrysomelidae), in Canada. The Canadian Entomologist, 136: 277287. doi:10.4039/N03-073. PCI Geomatics. 2003. SPANS v.5.31 for OS/2 - TYDAC Research. Richmond Hill, Ontario.Google Scholar
PCI Geomatics. 2003. SPANS v.5.31 for OS/2 - TYDAC Research. Richmond Hill, Ontario.Google Scholar
Phillips, S. J., Anderson, R.P., and Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190: 231259. doi:10.1016/j.ecolmodel.2005.03.026.Google Scholar
Plastoka, E., and Dabrowski, Z.T. 1986. Biological principles of leek moth (Acrolepia assectella Zellar, Lepidoptera: Plutellidae) control. II. Biology. Annals of the Warsaw Agricultural University, 13: 3546.Google Scholar
Régnière, J., Cooke, B., and Bergeron, V. 1995. Bio SIM: a computer-based decision support tool for seasonal planning of pest management activities. User's manual. Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre Information Report LAU-X-116 [online]. Available from http://www.cfs.nrcan.gc.ca/factsheets/biosim [accessed 4 October 2010].Google Scholar
Scaltriti, G.P., and Rezzadore, G. 1982. Leek moth: biology and control prospects. Informatore Agrario, 38: 2151521522.Google Scholar
Stockwell, D.R.B., and Peters, D.P. 1999. The GARP modelling system: problems and solutions to automated spatial prediction. International Journal of Geographic Information Systems, 13: 143158. doi:10.1080/136588199241391.CrossRefGoogle Scholar
Sutherst, R.W., and Maywald, G.F. 2005. A climate model of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae): implications for invasion of new regions, particularly Oceania. Environmental Entomology, 34: 317335. doi:10. 1603/0046-225X-34.2.317.Google Scholar
Sutherst, R.W., Maywald, G.F., Bottomley, W., and Bourne, A. 2004. CLIMEX version 2: user's guide [computer program]. Hearne Scientific Software Pty Ltd., Melbourne, Australia.Google Scholar
Sutherst, R.W., Maywald, G.F., and Kriticos, D.J. 2007. CLIMEX version 3: user's guide. www. Hearne.com.au [computer program]. Hearne Scientific Software Pty Ltd., Melbourne, Australia.Google Scholar
Velitchkevitch, A.I. 1924. Biological observations on A. assectella, Zell. in the Novgorod government. Review of Applied Entomology, 12: 356. [Abstr.]Google Scholar
Vera, M.T., Rodriguez, R., Segura, D.F., Cladera, J.L., and Sutherst, R.W. 2002. Potential geographical distribution of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), with emphasis on Argentina and Australia. Population Ecology, 31: 10091022.Google Scholar
Worner, S.P. 1994. Ecoclimatic assessment of potential establishment of exotic pests. Journal of Economic Entomology, 81: 973983.Google Scholar
Yonow, T., Kriticos, D.J., and Medd, R.W. 2004. The potential geographic range of Pyrenophora semeniperd. Phytopathology, 94: 805812. doi:10.1094/PHYTO.2004.94.8.805. PMID: 18943099.Google Scholar