Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T15:43:30.345Z Has data issue: false hasContentIssue false

SURVIVAL AND MULTIPLICATION OF STORED-PRODUCT BEETLES AT SIMULATED AND ACTUAL WINTER TEMPERATURES1

Published online by Cambridge University Press:  31 May 2012

P.G. Fields
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
N.D.G. White
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9

Abstract

Cryptolestes ferrugineus (Stephens), Cryptolestes pusillus (Schönherr), Tribolium castaneum (Herbst), and Rhyzopertha dominica (Fabricius) were gradually exposed to falling temperatures in the laboratory, simulating conditions in the centre of a 12- or 6-m-diameter granary containing wheat. Two years of overwintering mortality for C. ferrugineus and R. dominica were obtained from 11–13 farm granaries (40–100 t wheat). Cryptolestes ferrugineus (adults) was the most cold hardy species among the beetles tested. In the laboratory, survival was 40% at 25 °C declining to 10 °C over10 months, whereas at 25 °C declining to 0 °C over 10 months survival was 7%. Cryptolestes pusillus and T. castaneum did not survive once temperatures were below 10 °C, and R. dominica adults did not survive temperatures below 3 °C. In the field, there was no survival of C. ferrugineus in granaries that had February temperatures of −6.7 °C or lower. Six-week exposure to −10 °C killed most C. ferrugineus adults taken from granaries in February. Cryptolestes ferrugineus caught in granaries were more cold hardy than laboratory-reared strains. No T. castaneum or R. dominica survived an entire winter in granaries in the 2 years tested. Although C. pusillus was not tested in the granaries, it is unlikely it could survive the winter, as it had the same level of cold tolerance as T. castaneum in the laboratory. The implications for the population dynamics of these pest species in prairie grain are discussed.

Résumé

Cryptolestes ferrugineus (Stephens), Cryptolestes pusillus (Schönherr), Tribolium castaneum (Herbst) et Rhyzopertha dominica (Fabricius) ont été exposés à des températures progressivement plus froides dans un laboratoire simulant les conditions qui prévalent au centre d’un silo à grains de 12 ou 6 m de diamètre contenant du blé. Les résultats sur la mortalité de C. ferrugineus et de R. dominica pendant deux hivers ont été obtenus dans 11 à 13 silos à grains (40–100 t de blé). L’espèce C. ferrugineus (les adultes) s’est révélée la plus résistante au froid parmi toutes les espèces étudiées. En laboratoire, la survie a été estimée à 40% à une température graduellement descendante de 25 à 10 °C en 10 mois, et à 7% à une température graduellement descendante de 25 à 0 °C en 10 mois. Cryptolestes pusillus et T. castaneum n’ont pas survécu aux températures inférieures à 10 °C, et les adultes de R. dominica n’ont pas survécu aux températures inférieures à 3 °C. Sur le terrain, aucun C. ferrugineus n’a survécu dans les silos où les températures en février étaient égales ou inférieures à −6,7 °C. Une exposition de 6 semaines à une température de −10 °C a tué presque tous les adultes de C. ferrugineus recueillis dans les silos en février. Les C. ferrugineus capturés dans les silos étaient plus résistants au froid que les souches élevées en laboratoire. Aucun T. castaneum ou R. dominica n’a survécu tout un hiver dans les silos au cours des 2 années de l’étude. Bien que nous n’ayons pas fait de tests sur C. pusillus dans les silos, il est peu probable que l’espèce puisse survivre à l’hiver puisque son seuil de tolérance au froid s’est avéré égal à celui de T. castaneum en laboratoire. La dynamique des populations de ces espèces dans les silos à grains des prairies est examinée à la lumière de ces résultats.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Birch, L.C. 1945. The influence of temperature on the development of the different stages of Calandra oryzae L. and Rhyzopertha dominica Fab. (Coleoptera). Australian Journal of Experimental Biology and Medical Science. 23: 2935.CrossRefGoogle Scholar
Canadian Grain Commission. 1992. Stored Grain Pests. Office of the Chief Grain Inspector, Inspection Division, Canadian Grain Commission, Winnipeg, MB.Google Scholar
David, M.H., Mills, R.B., and White, G.D. 1977. Effects of low temperature acclimation on developmental stages of stored-product insects. Environmental Entomology 6: 181184.CrossRefGoogle Scholar
Fields, P.G. 1990. The cold hardiness of Cryptolestes ferrugineus and the use of ice nucleation-active bacteria as a cold-synergist. pp. 11831191in Fleurat-Lessard, F., and Ducom, P. (Eds.), Proceedings of the Fifth Working Conference on Stored-Product Protection, Bordeaux, France.Google Scholar
Fields, P.G. 1992. The control of stored product insects and mites with extreme temperatures. Journal of Stored Products Research 28: 89118.CrossRefGoogle Scholar
Fields, P.G., Van Loon, J., Dolinski, M.G., Harris, J.L., and Burkholder, W.E.. 1993. The distribution of Rhyzopertha dominica in western Canada. The Canadian Entomologist 125: 317328.CrossRefGoogle Scholar
Halstead, D.G.H. 1963. External sex differences in stored-products Coleoptera. Bulletin of Entomological Research 54: 119134.CrossRefGoogle Scholar
Howe, R.W. 1965. A summary of estimates of optimal and minimal conditions for population increase of some stored products insects. Journal of Stored Products Research 1: 177184.CrossRefGoogle Scholar
Jayas, D.S., Alagusundaram, K., Shunmugam, G., Muir, W.E., and White, N.D.G.. 1994. Simulated temperatures of stored grain bulks. Canadian Agricultural Engineering 36: 239245.Google Scholar
Lee, R.E., Stronggunderson, J.M., Lee, M.R., and Davidson, E.C.. 1992. Ice-nucleating active bacteria decrease the cold hardiness of stored grain insects. Journal of Economic Entomology 85: 371374.CrossRefGoogle Scholar
Madrid, F.J., White, N.D.G., and Loschiavo, S.R.. 1990. Insects in stored cereals, and their association with farming practices in southern Manitoba. The Canadian Entomologist 122: 515523.CrossRefGoogle Scholar
Mills, J.T., and White, N.D.G.. 1993. Seasonal occurrence of insects and mites in a Manitoba feed mill. Proceedings of the Entomological Society of Manitoba 49: 115.Google Scholar
Muir, W.E. 1973. Temperature and moisture in grain storages. pp. 4970in Sinha, R.N., and Muir, W.E. (Eds.), Grain Storage: Part of a System. A VI Publishing Co., Westport, CT.Google Scholar
Rilett, R.O. 1949. The biology of Laemophloeus ferrugineus (Steph.). Canadian Journal of Research Section D 27: 112148.CrossRefGoogle ScholarPubMed
Sinha, R.N. 1961. Insects and mites associated with hot spots in farm stored grain. The Canadian Entomologist 93: 609621.CrossRefGoogle Scholar
Sinha, R.N., and Watters, F.L.. 1985. Insect Pests of Flour Mills, Grain Elevators, and Feed Mills and their Control. Agriculture Canada Publication 1776.Google Scholar
Smith, L.B. 1970. Effects of cold-acclimation on the supercooling and survival of the rusty grain beetle, Cryptolestes ferrugineus (Stephens) (Coleoptera: Cucujidae), at sub-zero temperatures. Canadian Journal of Zoology 48: 853858.CrossRefGoogle Scholar
White, N.D.G., and Bell, R.J.. 1990. Relative fitness of a malathion-resistant strain of Cryptolestes ferrugineus (Coleoptera: Cucujidae) when development and oviposition occur in malathion-treated and untreated wheat kernels. Journal of Stored Products Research 26: 2337.CrossRefGoogle Scholar
White, N.D.G., and Bell, R.J.. 1993. Effects of mating status, sex ratio, and population density on longevity and offspring production of Cryptolestes ferrugineus (Stephens) (Coleoptera: Cucujidae). Experimental Gerontology 28: 617631.CrossRefGoogle ScholarPubMed
White, N.D.G., and Bell, R.J.. 1994. Effect of temperature, food density and sub-lethal exposure to malathion on aging in Cryptolestes ferrugineus (Stephens) (Coleoptera: Cucujidae). Journal of Stored Products Research 30: 187199.CrossRefGoogle Scholar
White, N.D.G., Demianyk, C.J., Kawamoto, H., and Sinha, R.N.. 1995. Population growth of Cryptolestes ferrugineus and C. pusillus (Coleoptera: Cucujidae) alone, or in competition in stored wheat or maize at different temperatures. Bulletin of Entomological Research 85: 425429.CrossRefGoogle Scholar
Williams, G.C. 1955. Observations of the effect of exposure to a low temperature on Laemophloeus minutus (Ol.) (Coleoptera: Cucujidae). Bulletin of Entomological Research 45: 351359.CrossRefGoogle Scholar