Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-12-01T00:38:39.516Z Has data issue: false hasContentIssue false

Spatial distribution of spotted-wing drosophila (Diptera: Drosophilidae) and other insects in fruit of a sweet cherry (Rosaceae) orchard

Published online by Cambridge University Press:  22 June 2020

Amanda C. Chamberlain
Affiliation:
Department of Biology, University of British Columbia Okanagan, 1177 Research Road, Kelowna, British Columbia, V1V 1V7, Canada
Robert Lalonde
Affiliation:
Department of Biology, University of British Columbia Okanagan, 1177 Research Road, Kelowna, British Columbia, V1V 1V7, Canada
Howard M.A. Thistlewood*
Affiliation:
Department of Biology, University of British Columbia Okanagan, 1177 Research Road, Kelowna, British Columbia, V1V 1V7, Canada Agriculture and Agri-Food Canada, Summerland Research and Development Centre, P.O. Box 5000, 4200 Highway 97 N, Summerland, British Columbia, V0H 1Z0, Canada
*
*Corresponding author: Email: [email protected]

Abstract

Spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), is an invasive pest of many small and soft fruits. We present the first results concerning its oviposition in the canopy of a sweet cherry (Prunus avium Linnaeus; Rosaceae) orchard. We examined the distribution of arthropods emerging from fruits of five cultivars ripening successively over seven weeks, in interior and border rows, within four regions of the tree canopy (top/bottom height × north/south aspect), and measured the associated fruit ripeness (ºBrix). Single fruits were reared for more than two weeks: 1328 arthropods emerged from 887 cherries in June, and 10 426 emerged from 1071 cherries in July. When populations were low, significantly more D. suzukii were present in the northernmost row and northern canopy aspect. Later, its distribution with respect to cherry row, height, and aspect was homogenous. Drosophila suzukii density per sweet cherry was highest in the latest ripening cultivar, when its distribution was not homogeneous; significantly more D. suzukii were in the centre than the southernmost row, in the lower canopy, and the southern aspect, than elsewhere. In the early season, single egg clutches were found without aggregation. As population density increased, so did intraspecific aggregation, but D. suzukii did not co-exist with other Drosophila Fallén species, nor with Rhagoletis indifferens Curran (Diptera: Tephritidae) when present.

Type
Research Papers
Copyright
© Crown Copyright and The Author(s), 2020. Published by Cambridge University Press on behalf of the Entomological Society of Canada

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Chandra Moffat

References

Agresti, A. 2013. Categorical data analysis. Wiley, Hoboken, New Jersey, United States of America.Google Scholar
Ashburner, M., Golic, K.G., and Hawley, R.S. 2005. Drosophila: a laboratory handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, United States of America.Google Scholar
Asplen, M.K., Anfora, G., Biondi, A., Choi, D.S., Chu, D., Daane, K.M., et al. 2015. Invasion biology of spotted wing drosophila (Drosophila suzukii): a global perspective and future priorities. Journal of Pest Science, 88: 469494. https://doi.org/10.1007/s10340–015–0681-z.CrossRefGoogle Scholar
Atallah, J., Teixeira, L., Salazar, R., Zaragoza, G., and Kopp, A. 2014. The making of a pest: the evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species. Proceedings of the Royal Society Biological Sciences Series B, 281: article 20132840, 19. https://doi.org/10.1098/rspb.2013.2840.CrossRefGoogle Scholar
Averill, A.L. and Prokopy, R.J. 1987. Intraspecific competition in the tephritid fruit fly Rhagoletis pomonella. Ecology, 68: 878886.CrossRefGoogle Scholar
Averill, A.L. and Prokopy, R.J. 1989. Distribution patterns of Rhagoletis-Pomonella Diptera Tephritidae eggs in Hawthorn. Annals of the Entomological Society of America, 82: 3844.CrossRefGoogle Scholar
Bächli, G., Vilela, C.R., Andersson, S., and Saura, A. 2004. The Drosophilidae (Diptera) of Fennoscandia and Denmark. Fauna Entomologica Scandinavica, 39: 1364.Google Scholar
Becher, P.G., Flick, G.R., Dowska, E., Schmidt, A., Hagman, A., Lebreton, S., et al. 2012. Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Functional Ecology 26: 822828. https://doi.org/10.1111/j.1365–2435.2012.02006.x.CrossRefGoogle Scholar
Beers, E.H., Van Steenwyk, R.A., Shearer, P.W., Coates, W.W., and Grant, J.A. 2011. Developing Drosophila suzukii management programs for sweet cherry in the western United States. Pest Management Science, 67: 13861395. https://doi.org/10.1002/ps.2279.CrossRefGoogle ScholarPubMed
Bellamy, D.E., Sisterson, M.S., and Walse, S.S. 2013. Quantifying host potentials: indexing postharvest fresh fruits for spotted wing drosophila, Drosophila suzukii. Public Library of Science One, 8: e61227. https://doi.org/10.1371/journal.pone.0061227.Google ScholarPubMed
Beppu, K. 2006. Seasonal change of drosophilid assemblage and adult age structure of the common drosophilid species in the Imperial Palace Grounds, Tokyo. Memoirs of the National Science Museum, Tokyo, 43: 295334.Google Scholar
Bernardi, D., Andrezza, F., Botton, M., Baronio, C.A., and Nava, D.E. 2017. Susceptibility and interactions of Drosophila suzukii and Zaprionus indianus (Diptera: Drosophilidae) in damaging strawberry. Neotropical Entomology, 46: 17.CrossRefGoogle ScholarPubMed
Briem, F., Dominic, A., Golla, B., Hoffmann, C., Englert, C., Herz, A., and Vogt, H. 2018. Explorative data analysis of Drosophila suzukii Trap catches from a seven-year monitoring program in southwest Germany. Insects, 9: 125.CrossRefGoogle ScholarPubMed
Cahenzli, F., Bühlmann, I., Daniel, C., and Fahrentrapp, J. 2018. The distance between forests and crops affects the abundance of Drosophila suzukii during fruit ripening, but not during harvest. Environmental Entomology, 47: 12741279. https://doi.org/10.1093/ee/nvy116.CrossRefGoogle Scholar
Caprile, J., Grant, J.A., Hamby, K., Haviland, D.R., and Rill, S. 2016. Phenology of spotted wing drosophila in the San Joaquin Valley varies by season, crop and nearby vegetation. California Agriculture, 70: 2431. https://doi.org/10.3733/ca.v070n01p24.Google Scholar
Cha, D.H., Hesler, S.P., Wallingford, A.K., Zaman, F., Jentsch, P., Nyrop, J., and Loeb, G.M. 2018. Comparison of commercial lures and food baits for early detection of fruit infestation risk by Drosophila suzukii (Diptera: Drosophilidae). Journal of Economic Entomology, 111: 645652. https://doi.org/10.1093/jee/tox369.CrossRefGoogle Scholar
Cini, A., Ioriatti, C., and Anfora, G. 2012. A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bulletin of Insectology, 65: 149160.Google Scholar
Coop, L. and Dreves, A. 2015. Spotted wing drosophila degree-day model: initial model analysis 10/14/11, revised 4/24/15 version 3 [online]. Available from http://uspest.org/wea/swdmodel2.pdf [accessed 10 May 2020].Google Scholar
Dalton, D.T., Walton, V.M., Shearer, P.W., Walsh, D.B., Caprile, J., and Isaacs, R. 2011. Laboratory survival of Drosophila suzukii under simulated winter conditions of the Pacific Northwest and seasonal field trapping in five primary regions of small and stone fruit production in the United States. Pest Management Science, 67: 13681374. https://doi.org/10.1002/ps.2280.CrossRefGoogle ScholarPubMed
Diepenbrock, L.M. and Burrack, H.J. 2016. Variation of within-crop microhabitat use by Drosophila suzukii (Diptera: Drosophilidae) in blackberry. Journal of Applied Entomology. https://doi.org/10.1111/jen.12335.Google Scholar
Drummond, F.A., Ballman, E., and Collins, J.A. 2019. Spotted-wing drosophila (Diptera: Drosophilidae) adult movement, activity, and oviposition behavior in Maine wild blueberry (Vaccinium angustifolium; Ericales: Ericaceae). Journal of Economic Entomology, 112: 16231633. https://doi.org/10.1093/jee/toz059.CrossRefGoogle Scholar
Entling, W. and Hoffmann, C. 2020. Single and combined effects of Drosophila suzukii and Drosophila melanogaster on sour rot development in viticulture. Journal of Applied Entomology, 144: 153160. https://doi.org/10.1111/jen.12721.CrossRefGoogle Scholar
Evans, R.K., Toews, M.D., and Sial, A.A. 2017. Diel periodicity of Drosophila suzukii (Diptera: Drosophilidae) under field conditions. Public Library of Science One, 12: e0171718. https://doi.org/10.1371/journal.pone.0171718.Google ScholarPubMed
Feder, J.L., Reynolds, K., Go, W., and Wang, E.C. 1995. Intra- and interspecific competition and host race formation in the apple maggot fly, Rhagoletis pomonella (Diptera: Tephritidae). Oecologia, 101: 416425.CrossRefGoogle Scholar
Hamby, K.A. and Becher, P.G. 2016. Current knowledge of interactions between Drosophila suzukii and microbes, and their potential utility for pest management. Journal of Pest Science, 89: 621630. https://doi.org/10.1007/s10340–016–0768–1.CrossRefGoogle Scholar
Hamby, K.A., Bolda, M.P., Sheehan, M.E., and Zalom, F.G. 2014. Seasonal monitoring for Drosophila suzukii (Diptera: Drosophilidae) in California commercial raspberries. Environmental Entomology, 43: 10081018. https://doi.org/10.1603/EN13245.CrossRefGoogle ScholarPubMed
Hardin, J.A., Kraus, D.A., and Burrack, H.J. 2015. Diet quality mitigates intraspecific larval competition in Drosophila suzukii. Entomologia Experimentalis et Applicata, 156: 5965. https://doi.org/10.1111/eea.12311.CrossRefGoogle Scholar
Hauser, M. 2011. A historic account of the invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest Management Science, 67: 13521357. https://doi.org/10.1002/ps.2265.CrossRefGoogle ScholarPubMed
Iglesias, L.E. and Liburd, O.E. 2017. The effect of border sprays and between-row soil tillage on Drosophila suzukii in organic blackberry production. Journal of Applied Entomology, 141: 1927. https://doi.org/10.1111/jen.12352.CrossRefGoogle Scholar
Ives, A.R. 1988. Aggregation and the coexistence of competitors. Annual Zoology Fennici, 25: 7588.Google Scholar
Jaffe, B.D. and Guédot, C. 2019. Vertical and temporal distribution of spotted-wing drosophila (Drosophila suzukii) and pollinators within cultivated raspberries. Pest Management Science, 75: 21882194.CrossRefGoogle ScholarPubMed
Karageorgi, M., Braecker, L.B., Lebreton, S., Minervino, C., Cavey, M., Siju, K.P., et al. 2017. Evolution of multiple sensory systems drives novel egg-laying behavior in the fruit pest Drosophila suzukii. Current Biology, 27: 847853.CrossRefGoogle ScholarPubMed
Keesey, I.W., Knaden, M., and Hansson, B.S. 2015. Olfactory specialization in Drosophila suzukii supports an ecological shift in host preference from rotten to fresh fruit. Journal of Chemical Ecology, 41: 121128. https://doi.org/10.1007/s10886–015–0544–3.CrossRefGoogle ScholarPubMed
Kirkpatrick, D.M., Gut, L.J., and Miller, J.R. 2018. Estimating monitoring trap plume reach and trapping area for Drosophila suzukii (Diptera: Drosophilidae) in Michigan tart cherry. Journal of Economic Entomology, 111: 12851289. https://doi.org/10.1093/jee/toy062.CrossRefGoogle ScholarPubMed
Klick, J., Yang, W.Q., Walton, V.M., Dalton, D.T., Hagler, J.R., Dreves, A.J., et al. 2016. Distribution and activity of Drosophila suzukii in cultivated raspberry and surrounding vegetation. Journal of Applied Entomology, 140: 3746. https://doi.org/10.1111/jen.12234.CrossRefGoogle Scholar
Kopp, A. 2011. Drosophila sex combs as a model of evolutionary innovations. Evolution and Development, 13: 504522.CrossRefGoogle Scholar
Kopp, A. and True, J.R. 2002. Evolution of male sexual characters in the Oriental Drosophila melanogaster species group. Evolution and Development, 4: 278291.CrossRefGoogle ScholarPubMed
Leach, H., Hagler, J.R., Machtley, S.A., and Isaacs, R. 2019. Spotted wing drosophila (Drosophila suzukii) utilization and dispersal from the wild host Asian bush honeysuckle (Lonicera spp.). Agricultural and Forest Entomology, 21: 149158.CrossRefGoogle Scholar
Lee, J.C., Bruck, D.J., Curry, H., Edwards, D., Haviland, D.R., Van Steenwyk, R.A., and Yorgey, B.M. 2011. The susceptibility of small fruits and cherries to the spotted-wing drosophila, Drosophila suzukii. Pest Management Science, 67: 13581367. https://doi.org/10.1002/ps.2225.CrossRefGoogle ScholarPubMed
Lee, J.C., Dreves, A.J., Cave, A.M., Kawai, S., Isaacs, R., Miller, J.C., et al. 2015a. Infestation of wild and ornamental noncrop fruits by Drosophila suzukii (Diptera: Drosophilidae). Annals of the Entomological Society of America, 108: 117129. https://doi.org/10.1093/aesa/sau014.CrossRefGoogle Scholar
Lee, J.C., Dreves, A.J., Isaacs, R., Loeb, G., Thistlewood, H., and Brewer, L.J. 2015b. Noncrop host plants of spotted wing drosophila in North America [online]. Available from https://catalog.extension.oregonstate.edu/sites/catalog/files/project/pdf/em9113.pdf [accessed 11 May 2020].Google Scholar
Levinson, H.Z. 1977. Lockstoffe als Insektistatika, Journal; of Applied Entomology, 84: 119. https://doi.org/10.1111/j.1439–0418.1977.tb04260.x.Google Scholar
Markow, T.A. and O’Grady, P. 2008. Reproductive ecology of Drosophila. Functional Ecology, 22: 747759. https://doi.org/10.1111/j.1365–2435.2008.01457.x.CrossRefGoogle ScholarPubMed
Mitsui, H., Beppu, K., and Kimura, M.T. 2010. Seasonal life cycles and resource uses of flower- and fruit-feeding drosophilid flies (Diptera: Drosophilidae) in central Japan. Entomological Science, 13: 6067.CrossRefGoogle Scholar
Mitsui, H., Takahashi, K.H., and Kimura, M.T. 2006. Spatial distributions and clutch sizes of Drosophila species ovipositing on cherry fruits of different stages. Population Ecology, 48: 233237. https://doi.org/10.1007/s10144–006–0260–5.CrossRefGoogle Scholar
Pelton, E., Gratton, C., and Guedot, C. 2017. Susceptibility of cold hardy grapes to Drosophila suzukii (Diptera: Drosophilidae). Journal of Applied Entomology, 141: 644652. https://doi.org/10.1111/jen.12384.CrossRefGoogle Scholar
Pelton, E., Gratton, C., Isaacs, R., Van Timmeren, S., Blanton, A., and Guédot, C. 2016. Earlier activity of Drosophila suzukii in high woodland landscapes but relative abundance is unaffected. Journal of Pest Science, 89: 725733. https://doi.org/10.1007/s10340–016–0733-z.CrossRefGoogle Scholar
Poyet, M., Eslin, P., Héraude, M., Le Roux, V., Prévost, G., Gibert, P., and Chabrerie, O. 2014. Invasive host for invasive pest: when the Asiatic cherry fly (Drosophila suzukii) meets the American black cherry (Prunus serotina) in Europe. Agricultural and Forest Entomology, 16: 251259. https://doi.org/10.1111/afe.12052.CrossRefGoogle Scholar
Prokopy, R.J., Reissig, W.H., and Moericke, V. 1976. Marking pheromone deterring repeated oviposition in Rhagoletis flies. Entomologia Experimentalis et Applicata, 20: 170178.CrossRefGoogle Scholar
Prokopy, R.J., Ziegler, J.R., and Wong, T.T.Y. 1978. Deterrence of repeated oviposition by fruit-marking pheromone in Ceratitis capitata (Diptera: Tephritidae). Journal of Chemical Ecology, 4: 5563.CrossRefGoogle Scholar
Rice, K.B., Jones, S.K., Morrison, W., and Leskey, T.C. 2017. Spotted wing drosophila prefer low hanging fruit: insights into foraging behavior and management strategies. Journal of Insect Behavior, 30: 645661. https://doi.org/10.1007/s10905–017–9646–9.CrossRefGoogle Scholar
Rohlfs, M. and Hoffmeister, T.S. 2004. Spatial aggregation across ephemeral resource patches in insect communities: an adaptive response to natural enemies? Oecologia, 140: 654661.CrossRefGoogle ScholarPubMed
Rombaut, A., Guilhot, R., Xuéreb, A., Benoit, L., Chapuis, M.P., and Fellous, S. 2017. Invasive Drosophila suzukii facilitates Drosophila melanogaster infestation and sour rot outbreaks in the vineyards. Royal Society Open Science, 4: 170117. https://doi.org/10.1098/rsos.170117.CrossRefGoogle ScholarPubMed
Sampson, B.J., Mallette, T., Addesso, K.M., Liburd, O.E., Iglesias, L.E., Stringer, S.J., et al. 2016. Novel aspects of Drosophila suzukii (Diptera: Drosophilidae) biology and an improved method for culturing this invasive species with a modified D. melanogaster diet. Florida Entomologist, 99: 774780.CrossRefGoogle Scholar
Santoiemma, G., Mori, N., Tonina, L., and Marini, L. 2018. Semi-natural habitats boost Drosophila suzukii populations and crop damage in sweet cherry. Agriculture, Ecosystems & Environment, 257: 152158. https://doi.org/10.1016/j.agee.2018.02.013.CrossRefGoogle Scholar
Sevenster, J.G. 1996. Aggregation and coexistence. I. Theory and analysis. Journal of Animal Ecology, 65: 297307.CrossRefGoogle Scholar
Shaw, B., Brain, P., Wijnen, H., and Fountain, M.T. 2018a. Reducing Drosophila suzukii emergence through inter-species competition. Pest Management Science, 74: 14661471. https://doi.org/10.1002/ps.4836.CrossRefGoogle ScholarPubMed
Shaw, B., Fountain, M.T. and Wijnen, H., 2018b. Recording and reproducing the diurnal oviposition rhythms of wild populations of the soft- and stone-fruit pest Drosophila suzukii. Public Library of Science One, 13: e0199406. https://doi.org/10.1371/journal.pone.0199406.Google ScholarPubMed
Shrader, M.E., Burrack, H.J., and Pfeiffer, D.G. 2019. Drosophila suzukii (Diptera: Drosophilidae) oviposition and adult emergence in six wine grape varieties grown in Virginia. Journal of Economic Entomology, 112: 139148. https://doi.org/10.1093/jee/toy305.CrossRefGoogle ScholarPubMed
Stemberger, T.L.M. 2015. Survey of hanging and fallen cherry fruit use by spotted wing drosophila, Drosophila suzukii (Matsumura, 1931) (Diptera: Drosophilidae), and other Drosophilidae species. Pan-Pacific Entomologist, 91: 347351.CrossRefGoogle Scholar
Stoeckli, S., Mody, K., and Dorn, S. 2008. Influence of canopy aspect and height on codling moth (Lepidoptera: Tortricidae) larval infestation in apple, and relationship between infestation and fruit size. Journal of Economic Entomology, 101: 8189. https://doi.org/10.1093/jee/101.1.81.CrossRefGoogle ScholarPubMed
Swoboda-Bhattarai, K.A., McPhie, D.R., and Burrack, H.J. 2017. Reproductive status of Drosophila suzukii (Diptera: Drosophilidae) females influences attraction to fermentation-based baits and ripe fruits. Journal of Economic Entomology, 110: 16481652.CrossRefGoogle ScholarPubMed
Tait, G., Grassi, A., Pfab, F., Crava, C.M., Dalton, D.T., Magarey, R., et al. 2018. Large-scale spatial dynamics of Drosophila suzukii in Trentino, Italy. Journal of Pest Science, 91: 12131224. https://doi.org/10.1007/s10340–018–0985-x.CrossRefGoogle Scholar
Thistlewood, H.M.A., Gill, P., Beers, E.H., Shearer, P.W., Walsh, D.B., Rozema, B.M., et al. 2018. Spatial analysis of seasonal dynamics and overwintering of Drosophila suzukii (Diptera: Drosophilidae) in the Okanagan-Columbia Basin, 2010–2014. Environmental Entomology, 47: 221232. https://doi.org/10.1093/ee/nvx178.CrossRefGoogle ScholarPubMed
Thistlewood, H., Rozema, B., and Acheampong, S. 2019. Infestation and timing of use of non-crop plants by Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the Okanagan Basin, Canada. The Canadian Entomologist, 151: 3448. https://doi.org/https://doi.org/10.4039/tce.2018.47.CrossRefGoogle Scholar
Toda, M.J., Kimura, M.T., and Tuno, N. 1999. Coexistence mechanisms of mycophagous drosophilids on multispecies fungal hosts: aggregation and resource partitioning. Journal of Animal Ecology, 68: 794803.CrossRefGoogle Scholar
Tonina, L., Mori, N., Sancassani, M., Dall’Ara, P., and Marini, L. 2018. Spillover of Drosophila suzukii between noncrop and crop areas: implications for pest management. Agricultural and Forest Entomology, 20: 575581. https://doi.org/10.1111/afe.12290.CrossRefGoogle Scholar
Van Timmeren, S. and Isaacs, R. 2014. Drosophila suzukii in Michigan vineyards, and the first report of Zaprionus indianus from this region. Journal of Applied Entomology, 138: 519527. https://doi.org/10.1111/jen.12113.CrossRefGoogle Scholar
Vlach, J. 2013. Identifying Drosophila suzukii [online]. Available from www.oregon.gov/oda/shared/documents/publications/ippm/spottedwingdrosophilaidkey.pdf [accessed 2 April 2017].Google Scholar
Walsh, D.B., Bolda, M.P., Goodhue, R.E., Dreves, A.J., Lee, J., Bruck, D.J., et al. 2011. Drosophila suzukii (Diptera: Drosophilidae): invasive pest of ripening soft fruit expanding its geographic range and damage potential. Journal of Integrated Pest Management, 2: 17. https://doi.org/10.1603/ipm10010.CrossRefGoogle Scholar
Wang, X., Kacar, G., and Daane, K.M. 2019. Temporal dynamics of host use by Drosophila suzukii in California’s San Joaquin Valley: implications for area-wide pest management. Insects, 10: 7.CrossRefGoogle Scholar
Wang, X.G., Stewart, T.J., Biondi, A., Chavez, B.A., Ingels, C., Caprile, J., et al. 2016. Population dynamics and ecology of Drosophila suzukii in Central California. Journal of Pest Science, 89: 701712.CrossRefGoogle Scholar
Weissinger, L., Schrieber, K., Breuer, M., and Mueller, C. 2019. Influences of blackberry margins on population dynamics of Drosophila suzukii and grape infestation in adjacent vineyards. Journal of Applied Entomology, 143: 802812. https://doi.org/10.1111/jen.12669.CrossRefGoogle Scholar
Wertheim, B., Marchais, J., Vet, L.E.M., and Dicke, M. 2002. Allee effect in larval resource exploitation in Drosophila: an interaction among density of adults, larvae, and micro-organisms. Ecological Entomology, 27: 608617. https://doi.org/10.1046/j.1365–2311.2002.00449.x.CrossRefGoogle Scholar
Yee, W.L. and Chapman, P.S. 2005. Effects of GF-120 fruit fly bait concentrations on attraction, feeding, mortality, and control of Rhagoletis indifferens (Diptera: Tephritidae). Journal of Economic Entomology, 98: 16541663.CrossRefGoogle Scholar
Supplementary material: PDF

Chamberlain et al. Supplementary Materials

Chamberlain et al. Supplementary Materials 1
Download Chamberlain et al. Supplementary Materials(PDF)
PDF 127.6 KB
Supplementary material: PDF

Chamberlain et al. Supplementary Materials

Chamberlain et al. Supplementary Materials 2

Download Chamberlain et al. Supplementary Materials(PDF)
PDF 119.8 KB