Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-24T05:19:18.176Z Has data issue: false hasContentIssue false

SPATIAL DISTRIBUTION AND SAMPLING PLANS WITH FIXED LEVELS OF PRECISION FOR CEREAL APHIDS (HOMOPTERA: APHIDIDAE) INFESTING SPRING WHEAT

Published online by Cambridge University Press:  31 May 2012

Philip J. Boeve
Affiliation:
Department of Entomology, North Dakota State University, Box 5346, Fargo, North Dakota, USA 58105-5346
Michael Weiss*
Affiliation:
Department of Entomology, North Dakota State University, Box 5346, Fargo, North Dakota, USA 58105-5346
*
2Author to whom all correspondence should he addressed.

Abstract

Three cereal aphids, Rhopalosiphum padi (L.), Schizaphis graminum (Rondani), and Sitobion avenae (F.), invade wheat fields in the northern Great Plains each spring, and populations occasionally reach economic levels. The first objective of this study was to describe the spatial distribution of three species of cereal aphids infesting hard red spring wheat (Triticum aestivum L.). The second objective was to develop two sampling plans for cereal aphids using individual stems as the sampling unit, a sampling plan with fixed levels of precision and a sequential sampling decision plan based on total numbers of aphids present. Aphid population estimates were collected from 47 eastern North Dakota spring wheat fields during 1993–1995. The number of aphids per stem were counted on 100–350 stems per field. Taylor’s power law and Iwao’s patchiness regression were used to analyze the spatial distribution of the aphids. Rhopalosiphum padi and S. avenae exhibited an aggregated distribution, whereas S. graminum was distributed randomly in the field. Taylor’s power law provided a better fit to the data than Iwao’s patchiness regression. Sample size requirements for precision levels of 0.10, 0.15, and 0.25 were estimated with Taylor’s regression coefficients. Required sample sizes increased with decreased aphid populations and increased levels of precision. The two sampling plans presented should be useful for research on cereal aphid population dynamics and pest management decision making in spring wheat.

Résumé

Chaque printemps, trois pucerons des céréales, Rhopalosiphum padi (L.), Schizaphis graminum (Rondani) et Sitobion avenae (F.), envahissent les champs de blé du nord de la région des Grandes Plaines et les populations atteignent parfois des proportions d’importance économique. Le premier but de cette étude était de décrire la répartition spatiale de trois espèces de pucerons qui infestent les cultures de blé dur roux de printemps (Triticum aestivum L.). Le deuxième objectif était de mettre au point deux plans d’échantillonnage des pucerons utilisant des tiges de blé comme unités d’échantillonnage, le premier plan avec un niveau de précision fixe, le second étant un plan d’échantillonnage séquentiel décisionnel basé sur le nombre total de pucerons présents. Les populations de pucerons ont été évaluées dans 47 champs de blé de printemps de l’est du Dakota du Nord en 1993–1995. Le nombre de pucerons a été compté sur 100–350 tiges par champ. La loi de la puissance de Taylor et la régression sur structure agrégée d’Iwao ont servi à analyser la répartition spatiale des pucerons. Rhopalosiphum padi et S. avenae ont une répartition contagieuse, alors que S. graminum a une répartition aléatoire. La loi de Taylor s’ajuste mieux aux données que la régression sur structure agrégée d’Iwao. La taille des échantillons nécessaire pour obtenir des niveaux de précision de 0,10, 0,15 et 0,25 a été estimée en utilisant les coefficients de régression de Taylor. La taille d’échantillon requise augmente en fonction inverse de la taille des populations de pucerons et en fonction directe du niveau de précision voulu. Ces deux plans d’échantillonnage devraient s’avérer très utiles pour la recherche sur la dynamique des populations de pucerons et pour la prise de décision dans les programmes de lutte contre les ravageurs dans les champs de blé de printemps.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acreman, S.J., and Dixon, A.F.G.. 1989. The effects of temperature and host quality on the rate of increase of the grain aphid (Sitobion avenae) on wheat. Annals of Applied Biology 115: 39.CrossRefGoogle Scholar
Ba-Angood, S.A., and Stewart, R.K.. 1980. Occurrence, development, and distribution of cereal aphids on early and late cultivars of wheat, barley, and oats in southwestern Quebec. The Canadian Entomologist 112: 615620.CrossRefGoogle Scholar
Burton, R.L., Simon, D.D., Starks, K.J., and Morrison, R.D.. 1985. Seasonal damage by greenbugs (Homoptera: Aphididae) to a resistant and susceptible variety of wheat. Journal of Economic Entomology 78: 395401.CrossRefGoogle Scholar
Butts, R.A., and Schaalje, G.B.. 1994. Spatial distribution of fall populations of Russian wheat aphid (Homoptera: Aphididae) in winter wheat. Journal of Economic Entomology 87: 12301236.CrossRefGoogle Scholar
Ekbom, B.S. 1985. Spatial distribution of Rhopalosiphum padi (L.) (Homoptera: Aphididae) in spring cereals in Sweden and its importance for sampling. Environmental Entomology 14: 312316.CrossRefGoogle Scholar
Elliott, N.C., and Kieckhefer, R.W.. 1986. Cereal aphid populations in winter wheat: spatial distributions and sampling with fixed levels of precision. Environmental Entomology 15: 954958.CrossRefGoogle Scholar
Elliott, N.C., and Kieckhefer, R.W.. 1987. Spatial distributions of cereal aphids (Homoptera: Aphididae) in winter wheat and spring oats in South Dakota. Environmental Entomology 16: 896901.Google Scholar
Elliott, N.C., Kieckhefer, R.W., and Walgenbach, D.D.. 1990. Binomial sequential sampling methods for cereal aphids in small grains. Journal of Economic Entomology 83: 13811387.CrossRefGoogle Scholar
Feng, M.G., and Nowierski, R.M.. 1992. Spatial distribution and sampling plans for four species of cereal aphids (Homoptera: Aphididae) infesting spring wheat in southwestern Idaho. Journal of Economic Entomology 85: 830837.CrossRefGoogle Scholar
Feng, M.G., Nowierski, R.M., and Zeng, Z.. 1993. Populations of Sitobion avenae and Aphidius ervi on spring wheat in the northwestern United States. Entomologia Experimentalis et Applicata 67: 109117.CrossRefGoogle Scholar
Green, R.H. 1970. On fixed precision level sequential sampling. Research Population Ecology (Kyoto) 12: 249251.CrossRefGoogle Scholar
Iwao, S. 1968. A new regression method for analyzing the aggregation pattern of animal populations. Research Population Ecology (Kyoto) 10: 120.CrossRefGoogle Scholar
Iwao, S. 1975. A new method of sequential sampling to classify populations relative to a critical density. Research Population Ecology (Kyoto) 16: 281288.CrossRefGoogle Scholar
Johnston, R.L., and Bishop, G.W.. 1987. Economic injury levels and economic thresholds for cereal aphids (Homoptera: Aphididae) on spring-planted wheat. Journal of Economic Entomology 80: 478482.CrossRefGoogle Scholar
Kieckhefer, R.W. 1975. Field populations of cereal aphids in South Dakota spring grains. Journal of Economic Entomology 68: 161164.CrossRefGoogle Scholar
Kieckhefer, R.W., Elliott, N.C., Riedell, W.E., and Fuller, B.W.. 1994. Yield of spring wheat in relation to level of infestation by greenbugs (Homoptera: Aphididae). The Canadian Entomologist 126: 6166.CrossRefGoogle Scholar
Kieckhefer, R.W., and Gellner, J.L.. 1988. Influence of plant growth stage on cereal aphid reproduction. Crop Science 28: 688690.CrossRefGoogle Scholar
Kieckhefer, R.W., and Gellner, J.L.. 1992. Yield loss in winter wheat caused by low-density cereal aphid populations. Agronomy Journal 84: 180183.CrossRefGoogle Scholar
Kieckhefer, R.W., and Kantack, B.H.. 1980. Losses in yield in spring wheat in South Dakota caused by cereal aphids. Journal of Economic Entomology 73: 582585.CrossRefGoogle Scholar
Kieckhefer, R.W., and Kantack, B.H.. 1986. Yield losses in spring barley caused by cereal aphids (Homoptera: Aphididae) in South Dakota. Journal of Economic Entomology 79: 749752.CrossRefGoogle Scholar
Kieckhefer, R.W., and Kantack, B.H.. 1988. Yield losses in winter grains caused by cereal aphids (Homoptera: Aphididae) in South Dakota. Journal of Economic Entomology 81: 317321.CrossRefGoogle Scholar
Kieckhefer, R.W., Lytle, W.F., and Spuhler, W.. 1974. Spring movement of cereal aphids into South Dakota. Environmental Entomology 3: 347350.CrossRefGoogle Scholar
Kring, T.J., and Gilstrap, F.E.. 1983. Within-field distribution of greenbug (Homoptera: Aphididae) and its parasitoids in Texas winter wheat. Journal of Economic Entomology 76: 5762.CrossRefGoogle Scholar
Leather, S.R., and Dixon, A.F.G.. 1981. The effect of cereal growth stage and feeding site on the reproductive activity of the bird-cherry aphid, Rhopalosiphum padi. Annals of Applied Biology 97: 135141.CrossRefGoogle Scholar
McBride, D.K., and Glogoza, P.A. 1993. Aphid management in small grains, corn and sorghum. Publ. E-493. North Dakota State University Extension Service Publication F–493.Google Scholar
Nyrop, J.P., and Simmons, G.A.. 1984. Errors incurred when using Iwao's sequential decision rule in insect sampling. Environmental Entomology 13: 14591465.CrossRefGoogle Scholar
Pedigo, L.P. 1996. Entomology and pest management. Prentice-Hall Inc., Upper Saddle River, NJ. 679 pp.Google Scholar
Riedell, W.E., and Kieckhefer, R.W.. 1995. Feeding damage effects of three aphid species on wheat root growth. Journal of Plant Nutrition 18: 18811891.CrossRefGoogle Scholar
SAS Institute Inc. 1989. SAS/STAT User's Guide, Version 6. 4th Edition. Vol. 2. SAS Institute Inc., Cary, NC.Google Scholar
Sokal, R.R., and Rohlf, F.J.. 1981. Biometry. 2nd Edition. W.H. Freeman and Co., San Francisco, CA.Google Scholar
Southwood, T.R.E. 1978. Ecological Methods. 2nd Edition. Chapman and Hall, London. 524 pp.Google Scholar
Taylor, L.R. 1961. Aggregation, variance, and the mean. Nature (London) 189: 732735.CrossRefGoogle Scholar
Taylor, L.R. 1984. Assessing and interpreting the spatial distributions of insect populations. Annual Review of Entomology 29: 321357.CrossRefGoogle Scholar
Taylor, L.R., Woiwod, I.P., and Perry, J.N. 1978. The density-dependence of spatial behavior and the rarity of randomness. Journal of Animal Ecology 47: 383406.CrossRefGoogle Scholar
Wadley, F.M. 1931. Ecology of Toxopteragraminum, especially as to factors affecting importance in the northern United States. Annals of the Entomological Society of America 24: 325395.CrossRefGoogle Scholar
Ward, S.A., Chambers, R.J., Sunderland, K., and Dixon, A.F.G.. 1986. Cereal aphid populations and the relation between mean density and spatial variance. Netherlands Journal of Plant Pathology 92: 127132.CrossRefGoogle Scholar
Watt, A.D. 1979. The effect of cereal growth stages on the reproductive activity of Sitobion avenue and Metopolophium dirhodum. Annals of Applied Biology 91: 147157.CrossRefGoogle Scholar
Zadoks, J.C., Chang, T.T., and Konzak, C.F.. 1974. A decimal code for the growth stages of cereals. Weed Research 14: 415421.CrossRefGoogle Scholar