Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T05:37:29.322Z Has data issue: false hasContentIssue false

RESISTANCE OF TRANSGENIC POTATOES TO ATTACK BY EPITRIX CUCUMERIS (COLEOPTERA: CHRYSOMELIDAE)

Published online by Cambridge University Press:  31 May 2012

Jeff G. Stewart*
Affiliation:
Crops and Livestock Research Centre, Agriculture and Agri-Food Canada, P.O. Box 1210, Charlottetown, Prince Edward Island, Canada CIA 7M8
Jennifer Feldman
Affiliation:
Crops and Livestock Research Centre, Agriculture and Agri-Food Canada, P.O. Box 1210, Charlottetown, Prince Edward Island, Canada CIA 7M8
Debby A. LeBlanc
Affiliation:
Crops and Livestock Research Centre, Agriculture and Agri-Food Canada, P.O. Box 1210, Charlottetown, Prince Edward Island, Canada CIA 7M8
*
1Author to whom all correspondence should be addressed.

Abstract

Potato plants (Solanum tuberosum, cv. Russet Burbank) genetically altered to produce the CryIIIA protein from Bacillus thuringiensis var tenebrionis were tested for susceptibility to attack by the potato flea beetle, Epitrix cucumeris (Harris), on Prince Edward Island, Canada, from 1993 to 1996. Average weekly damage to the fourth terminal leaf of transgenic potato plants was 31% lower in 1993 and 20% lower in 1994 compared with nontransgenic plants. Transgenic plants had 29% fewer potato flea beetle adults when compared with nontransgenic plants in 1994, although no difference was detected between the two plant types in 1993. Recovery of potato flea beetle pupae in the soil was noticeably lower from transgenic plants expressing the CryIIIA protein in all parts of the plant (Construct No. RBBT02-10Y1) than from either the transgenic plants that expressed the CryIIIA protein primarily in the green foliage (Construct No. RBBT04-01) or the nontransgenic plants. Adult potato flea beetles, when given a choice between transgenic and nontransgenic leaf material, fed preferentially on nontransgenic material. In contrast, when adults were not given a choice, feeding damage was similar between treatments. These results suggest that the reason for reduced feeding on transgenic potato plants by the potato flea beetle is, at least in part, due to some toxicity of the plants to immature growth stages and a preference for adults to feed on nontransgenic material when it is available.

Résumé

Des plants de pommes de terre (Solanum tuberosum cv. Russet Burbank) modifiés génétiquement pour qu’ils produisent la protéine CryIIIA du bacille Bacillus thuringiensis var tenebrionis ont été examinés afin d’évaluer leur sensibilité aux infestations de la chrysomèle Epitrix cucumeris (Harris) dans l’île du Prince-Édouard, Canada, de 1993 à 1996. Les dommages hebdomadaires moyens à la quatrième feuille terminale des plants transgéniques ont été de 31% moins graves que dans les plants non transgéniques en 1993 et de 20% moins graves en 1994. Les plants transgéniques portaient 29% moins de chrysomèles adultes que les plants non transgéniques en 1994, mais aucune différence n’a été observée entre les deux types de plants en 1993. Le nombre de nymphes de chrysomèles retrouvées dans le sol était plus faible autour des plants transgéniques exprimant la protéine CryIIIa dans toutes ses parties (préparation No. RBBTO2-10YI) qu’autour des plants transgéniques exprimant la protéine CryIIIA seulement dans le feuillage vert (préparation No. RBBTO4-01) ou dans les plants non transgéniques. Face à un choix entre du feuillage transgénique et du feuillage non transgénique, les chrysomèles adultes se nourrissaient de préférence de feuillage non transgénique. En revanche, lorsque les insectes n’avaient pas le choix, les dommages aux feuilles étaient équivalents dans tous les cas. Ces résultats semblent indiquer que le fait que les chrysomèles se nourrissent moins sur les plants de pommes de terre transgéniques est dû, en partie du moins, à une certaine toxicité de la plante pour les stades immatures de l’insecte et à la préférence des adultes pour les plants non transgéniques lorsqu’ils sont disponibles.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Advisory Committee on Potatoes, 1994. Potato crop variety, weed and pest control recommendations for the Atlantic Provinces. Atlantic Provinces Agriculture Services Co-ordinating Committee Advisory Committee on Potatoes Agdex 257 Publication 1300AGoogle Scholar
Almeida, E.R.P., Gossele, V., Muller, C.G., Dockx, J., Reynaerts, A., Notterman, J., Kebbers, E., Timko, M.P. 1989. Transgenic expression of two marker genes under the control of an Arabidopsis rbcS promoter: sequences encoding the Rubisco transit peptide increase expression level. Molecular and General Genetics 218: 7886Google Scholar
Altre, J.A., Grafius, E.J., Whalon, M.E. 1996. Feeding behaviour of CryIIIA-resistant and susceptible Colorado potato beetle (Coleoptera: Chrysomelidae) larvae on Bacillus thureingiensis tenebrionis-transgenic CryIIIA-treated and untreated potato foliage. Journal of Economic Entomology 89: 311–17Google Scholar
Bernard, A., Asiedu, S.K., Boswall, P. (Eds.). 1993. Atlantic Canada potato guide. Atlantic Provinces Agriculture Services Co-ordinating Committee Agdex 257 Publication 1300/93Google Scholar
Cannon, F.M. 1949. Potato flea beetle. Processed Publication Series Entomology 94Google Scholar
Cannon, F.M. 1960. Control of the potato flea beetle in Canada. Canadian Department of Agriculture Publication 1072Google Scholar
Christie, R.D., Schulz, J.T., Gudmestad, N.C. 1993. Potato flea beetle (Coleoptera: Chrysomelidae) evaluated as a possible vector of Ring Rot bacterium in potatoes. Journal of Economic Entomology 86: 1223–27Google Scholar
Daniels, L.B. 1933. A flotation method for determining abundance of potato flea beetle larvae. Journal of Economic Entomology 26: 1175–77Google Scholar
Ferro, D.N., Boiteau, G. 1993. Management of insect pests. pp. 103–15 in Rowe, R.C. (Ed.), Potato Health Management. St. Paul: APS PressGoogle Scholar
Kay, R., Chan, A., Daly, M., Mcpherson, J. 1987. Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science (Washington, D.C.) 236: 1299–02Google Scholar
Microsoft Corporation. 1994. Microsoft Excel for Windows, version 5.0. Copyright 1993–94. Redmond: Microsoft CorporationGoogle Scholar
Newell, C.A., Rozman, R., Hinchee, M.A., Lawson, E.C., Haley, L., Sanders, P., Kaniewski, W., Turner, N.E., Horsch, R.B., Fraley, R.T. 1991. Agrobacterium-mediated transformation of Solanum tuberosum cv. Russet Burbank. Plant Cell Reports 10: 3034Google Scholar
Perlak, F., Stone, T.B., Muskropf, T.B., Petersen, L., Parker, G., McPherson, S., Wyman, J., Love, S., Beaver, D., Reed, G., Fischhoff, D. 1993. Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Molecular Biology 22: 313–21Google Scholar
Rogan, G.J., Ream, J.E., Berberich, S.A., Fuchs, R.L. 1992. Enzyme-linked imunosorbent assay for quantitation of neomycin phosphotransferase II in genetically modified cotton tissue extracts. Journal of Agricultural and Food Chemistry 40: 1453–58Google Scholar
SAS Institute Inc. 1985. SAS/STAT users guide, release 6.03 edition. Cary: SAS Institute Inc.Google Scholar
Thompson, L.S. 1987. The control of potato flea beetles, leafhoppers, wireworms, and white grubs. pp. 99111in Boiteau, G., Singh, R.P., Parry, R.H. (Eds.), Potato Pest Management in Canada, Proceedings of a Symposium on Improving Potato Pest Protection, Fredericton, 27–29 Janary, 1987. CanadaNew Brunswick Agri-Food Development AgreementGoogle Scholar
Wierenga, J.M., Norris, D.L., Whalon, M.E. 1996. Stage-specific mortality of Colorado potato beetle (Coleoptera: Chrysomelidae) feeding on transgenic potatoes. Journal of Economic Entomology 89: 1047–52Google Scholar
Wong, E.Y., Hironaka, C.M., Fischhoff, D. 1992. Arabidopsis thaliana small subunit leader and transit peptide enhances the expression of Bacillus thuriengiensis proteins in transgenic plants. Plant Molecular Biology 20: 8193Google Scholar