Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T10:36:39.012Z Has data issue: false hasContentIssue false

Resistance against Pissodes strobi (Coleoptera: Curculionidae) in severed leaders and in a water-soluble bark extract of Picea sitchensis (Pinaceae): evidence for a post-ingestive mode of action

Published online by Cambridge University Press:  31 May 2012

T.S. Sahota*
Affiliation:
Pacific Forestry Centre, Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
J.F. Manville
Affiliation:
Pacific Forestry Centre, Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
J. Hollmann
Affiliation:
Pacific Forestry Centre, Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
I. Leal
Affiliation:
Pacific Forestry Centre, Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
A. Ibaraki
Affiliation:
Pacific Forestry Centre, Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
E. White
Affiliation:
Pacific Forestry Centre, Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
*
1 Author to whom all correspondence should be addressed.

Abstract

The levels of ovarian growth and transcription of the vitellogenin gene were compared in Pissodes strobi Peck (Coleoptera: Curculionidae) feeding on severed leaders from susceptible and resistant Picea sitchensis (Bong) Carr (Pinaceae) and in weevils given a dose of an aqueous extract from the bark of such leaders. A force-feeding method was developed to deliver the extracts into the alimentary canal of the weevils. Weevils given one dose of the aqueous extract from resistant leaders, followed by feeding on sections of laterals from susceptible trees, exhibited a 60% inhibition of oocyte growth relative to insects given the extract from susceptible leaders. In similar experiments, transcription of the vitellogenin gene of the weevils was inhibited by about 48%. Transcription of the vitellogenin gene was reduced by about 60% in weevils feeding on the severed leaders from the resistant clone relative to those feeding on severed leaders from susceptible trees. Results indicate that these effects of resistance do not require an intact tree. Experiments using extracts show that the observed effects result from a post-ingestive effect of the extract.

Résumé

Nous avons comparé la croissance ovarienne et la transcription du gène de la vitellogénine chez des Pissodes strobi Peck (Coleoptera : Curculionidae) se nourrissant de pousses terminales coupées de Picea sitchensis (Bong) Carr (Pinaceae), sensibles ou résistantes, et chez des charançons qui avaient reçu une dose d’extrait aqueux d’écorce de ces pousses. Une méthode de gavage a été mise au point pour introduire les extraits d’écorce dans le canal alimentaire des charançons. Les charançons qui avaient reçu une dose d’extrait d’écorce de pousses terminales résistantes et qui avaient ensuite été nourris de sections de pousses terminales latérales sensibles, ont vu la croissance de leurs oocytes diminuer de 60% comparativement aux insectes qui avaient reçu de l’extrait de pousses sensibles. Dans d’autres expériences du même type, la transcription du gène de la vitellogénine de charançon a été inhibée d’environ 48%. La transcription du gène était réduite d’environ 60% dans le cas de charançons nourris de pousses terminales coupées du clone résistant plutôt que de pousses coupées d’arbres sensibles. Les résultats indiquent que ces effets de la résistance se manifestent même si les arbres ne sont pas intacts. Les expériences démontrent que les effets observés résultent de l’action de l’extrait après l’ingestion.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfaro, R.I., He, F., Tomlin, E.S., Kiss, G. 1996. White spruce resistance to white pine weevil related to bark resin canal density. Canadian Journal of Botany 75: 568–73CrossRefGoogle Scholar
Brooks, J.E., Borden, J.H. 1992. Development of a resistance index for Sitka spruce against the white pine weevil Pissodes strobi Peck. Canadian Forest Service and British Columbia Ministry of Forests FRDA Report 180Google Scholar
Hulme, M.A. 1995. Resistance by translocated Sitka spruce to damage by Pissodes strobi (Coleoptera: Curculionidae) related to tree phenology. Journal of Economic Entomology 88: 1525–30CrossRefGoogle Scholar
King, J.N. 1994. Delivering durable resistant Sitka spruce for plantations. pp 134–49 in Alfaro, R.I., Kiss, G., Fraser, G.R. (Eds), The white pine weevil: biology, damage and management. Canadian Forest Service and British Columbia Ministry of Forests FRDA Report 226Google Scholar
Kiss, G.K., Yanchuk, A.D. 1991. Preliminary evaluation of genetic variation of weevil resistance in interior spruce in British Columbia. Canadian Journal of Forest Research 21: 230–4CrossRefGoogle Scholar
Leal, I., White, E., Sahota, T.S., Manville, J.F. 1997. Differential expression of the vitellogenin gene in the spruce terminal weevil feeding on resistant versus susceptible host trees. Insect Biochemistry and Molecular Biology 27: 569–75CrossRefGoogle ScholarPubMed
Overhulser, D., Gara, R.I. 1981. Occluded resin canals associated with egg cavities made by shoot infesting Pissodes. Forest Science 27: 297–8Google Scholar
Sahota, T.S., Manville, J.F., White, E. 1994. Interaction between Sitka spruce weevil and its host, Picea sitchensis (Bong) Carr.: a new mechanism for resistance. The Canadian Entomologist 126: 1067–74CrossRefGoogle Scholar
Sahota, T.S., Manville, J.F., Peet, F.G., White, E.E., Ibaraki, A.I., Nault, J.R. 1998 a. Resistance against white pine weevil: effect on weevil reproduction and host finding. The Canadian Entomologist 130: 337–47CrossRefGoogle Scholar
Sahota, T.S., Manville, J.F., Peet, F.G., Ibaraki, A., White, E. 1998 b. Weevil physiology controls the feeding rates of Pissodes strobi on Picea sitchensis. The Canadian Entomologist 130: 305–14CrossRefGoogle Scholar
Sahota, T.S., Peet, F.G., Manville, J.F. 2000. A comment on “Feeding and oviposition preferences of white pine weevil (Coleoptera: Curculionidae) on resistant and susceptible Sitka spruce clones in laboratory bioassays.” Environmental Entomology 29: 1097–9CrossRefGoogle Scholar
Sambrook, J., Fritsch, E.F., Maniatis, T. 1989. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory PressGoogle Scholar
Trudel, R., Lavallée, R., Bauce, É, Cabana, J., Guertin, C. 1994. Variations in ground white pine bark concentration in artificial diet in relation to egg laying, feeding, and mortality of Pissodes strobi (Coleoptera: Curculionidae). Journal of Economic Entomology 87(1): 96100CrossRefGoogle Scholar
Trudel, R. 1998. Gonadal development and egg-laying response of female white pine weevils reared on artificial and natural diets. The Canadian Entomologist 130: 201–14CrossRefGoogle Scholar
van Frankenhuyzen, K., Nystrom, C.W. 1987. Effect of temperature on mortality and recovery of spruce budworm (Lepidoptera: Tortricidae) exposed to Bacillus thuringensis Berliner. The Canadian Entomologist 119: 941–54CrossRefGoogle Scholar
Ying, C.C. 1991. Genetic resistance to the white pine weevil in Sitka spruce. British Columbia Ministry of Forests Note 106: 117Google Scholar