Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T06:19:30.680Z Has data issue: false hasContentIssue false

THE RELATIONSHIP BETWEEN DENSITY OF EMERGED DENDROCTONUS PONDEROSAE (COLEOPTERA: SCOLYTIDAE) AND DENSITY OF EXIT HOLES IN LODGEPOLE PINE

Published online by Cambridge University Press:  31 May 2012

L. Safranyik
Affiliation:
Canadian Forestry Service, Pacific Forest Research Centre, Victoria, British Columbia V8Z 1M5
D.A. Linton
Affiliation:
Canadian Forestry Service, Pacific Forest Research Centre, Victoria, British Columbia V8Z 1M5

Abstract

The relationship between the density of insect holes in the bark (X1) and the density of emerged mountain pine beetles (Y) was investigated in naturally infested lodgepole pine in south-central British Columbia. The density of exit and ventilation holes (Ho) that were present in the bark prior to emergence by mountain pine beetle averaged 10% of all holes present following the emergence period. There was a weak but significant inverse relationship between Ho and both phloem thickness and density of emerged mountain pine beetles. Painting the bark with light-color latex paint did not affect survival or the temporal pattern of emergence by mountain pine beetle but ensured identification and greatly enhanced counting of fresh exit holes. Of the several regression models investigated, the relation between Y and both X1 and X2 (= X1Ho) was best fitted by a log-log linear model. A method is suggested for setting limits on the size of exit holes cut by mountain pine beetle in order to exclude from X2 much of the variation caused by exit holes cut by associated insects. A simple mathematical model was developed of the relationship between mean density of exit holes and the density of emerged mountain pine beetles.

Résumé

On a étudié le rapport entre la densité des trous d'insectes dans l'écorce (X1) et la densité des dendroctones du pin ponderosa sortis (Y) dans des pins tordus du centre-sud de la Colombie-Britannique naturellement infestés. Le nombre de trous de sortie et d'aération (Ho) présents dans l'écorce avant l'émergence des dendroctones équivalait en moyenne à 10% de tous les rous observés après la période d'émergence. On a constaté un rapport inverse, faible mais significatif, entre Ho, d'une part, et l'épaisseur du phloème et la densité des dendroctones sortis d'autre part. L'application d'une peinture au latex de couleur claire sur l'écorce n'a pas modifié la survie ni les caractéristiques temporelles de l'émergence du dendroctone et a permis de reconnaître les trous de sortie nouvellement percés et de les compter beaucoup plus facilement. Plusieurs modèles de régression ont été essayés, mais c'est le modèle logarithmique-linéaire qui convenait le mieux au rapport entre Y et X1, et entre Y et X2 c'est-à-dire, X1Ho). On propose une facon d'établir des limites pour la dimension des trous de sortie du dendroctone du pin ponderosa afin d'éliminer une grande partie de la variation de X2 causée par les trous de sortie percés par les insectes qui accompagnent le dendroctone. On a mis au point un modèle mathématique simple du rapport entre la densité moyenne des trous de sortie et la densité des dendroctones du pin ponderosa sortis.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amman, G.D. 1969. Mountain pine beetle emergence in relation to the depth of lodgepole pine bark. USDA Forest Service, Research Note INT-60. Intermtn. Forest and Range Exp. Station, Ogden, UT. 7 pp.Google Scholar
Amman, G.D. 1972. Mountain pine beetle brood production in relation to the thickness of lodgepole pine phloem. J. econ. Ent. 65: 138140.CrossRefGoogle Scholar
Amman, G.D. and Cole, W.E.. 1983. Mountain pine beetle dynamics in lodgepole pine forests. Part II: Population dynamics. USDA Forest Service, Gen. Tech. Rep. INT-45. Intermtn. Forest and Range Exp. Station, Ogden, UT. 59 pp.Google Scholar
Amman, G.D., McGregor, M.D., Cahill, D.B., and Klein, W.H.. 1977. Guidelines for reducing losses of lodgepole pine to the mountain pine beetle in unmanaged stands in the Rocky Mountains. USDA Forest Serv. Gen. Tech. Rep. INT-36. Intermtn. Forest and Range Exp. Station, Ogden, UT. 19 pp.Google Scholar
Bright, D.E. 1976. The bark beetles of Canada and Alaska C leoptera: Scolytidae. Can. Dep. Agric. Publ. 1576. Biosystematics Research Institute, Ottawa, ON. 241 pp.Google Scholar
DeLeon, D. 1935. The biology of Coeloides dendroctoni Cushman (Hymenoptera: Braconidae) an important parasite of the mountain pine beetle (Dendroctonus monticolae Hopk.). Ann. ent. Soc. Am. 28: 411424.CrossRefGoogle Scholar
Freese, F. 1964. Linear regression methods for forest research. USDA Forest Service Research Pap. FPL 17. For. Prod. Lab., Madison, WI. 136 pp.Google Scholar
Pielou, E.C. 1969. An introduction to Mathematical Ecology. Wiley-Interscience, John Wiley and Sons, Inc. 286 pp.Google Scholar
Reid, R.W. 1958. The behavior of the Mountain Pine Beetle, Dendroctonus monticolae Hopk., during mating, egg laying and gallery construction. Can. Ent. 90: 505509.CrossRefGoogle Scholar
Reid, R.W. 1963. Biology of mountain pine beetle, Dendroctonus monticolae Hopkins, in the east Kootenay region of British Columbia. III. Interaction between the beetle and its host, with emphasis on brood mortality and survival. Can. Ent. 95: 225238.CrossRefGoogle Scholar
Robinson, R.C. 1962. Blue stain fungi in lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.) infested by the mountain pine beetle (Dendroctonus monticolae Hopk.). Can. J. Bot. 40: 609614.CrossRefGoogle Scholar
Roe, A.L. and Amman, G.D.. 1970. The mountain pine beetle in lodgepole pine forests. USDA Forest Service, Res. Pap. INT-71. Intermtn. Forest and Range Exp. Station, Ogden, UT. 23 pp.Google Scholar
Ryan, R.B. and Rudinsky, J.R.. 1962. Biology and habits of the Douglas-fir beetle parasite Coeloides brunneri Viereck (Hymenoptera: Braconidae) in western Oregon. Can. Ent. 94: 748763.CrossRefGoogle Scholar
Safranyik, L. 1969. Development of a technique for sampling mountain pine beetle populations in lodgepole pine. Ph.D. Thesis, University of British Columbia, Vancouver, BC. 195 pp.Google Scholar
Safranyik, L. 1976. Size- and sex-related emergence, and survival in cold storage, of mountain pine beetle adults. Can. Ent. 108: 209212.CrossRefGoogle Scholar
Safranyik, L. and Graham, K.. 1971. Edge-effect bias in the sampling of sub-cortical insects. Can. Ent. 103: 240255.CrossRefGoogle Scholar
Safranyik, L. and Jahren, R.. 1970. Host characteristics, brood density and the size of mountain pine beetle emerging from lodgepole pine. Can. Dep. Fish. For., Bi-mon. Res. Notes 26: 3536.Google Scholar
Safranyik, L., Shrimpton, D.M., and Whitney, H.S.. 1974. Management of lodgepole pine to reduce losses from the mountain pine beetle. Can. For. Serv., Tech. Rep. I. Victoria, BC. 24 pp.Google Scholar