Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-02T23:56:53.240Z Has data issue: false hasContentIssue false

QUANTITATIVE DESCRIPTION OF THE INFLUENCE OF FLUCTUATING TEMPERATURES ON THE REPRODUCTIVE BIOLOGY AND SURVIVAL OF THE WESTERN CORN ROOTWORM, DIABROTICA VIRGIFERA VIRGIFERA LECONTE (COLEOPTERA: CHRYSOMELIDAE)

Published online by Cambridge University Press:  31 May 2012

N.C. Elliott
Affiliation:
U.S. Department of Agriculture, Agricultural Research Service, Northern Grain Insects Research Laboratory, Brookings, South Dakota, USA 57006
D.R. Lance
Affiliation:
U.S. Department of Agriculture, Agricultural Research Service, Northern Grain Insects Research Laboratory, Brookings, South Dakota, USA 57006
S.L. Hanson
Affiliation:
U.S. Department of Agriculture, Agricultural Research Service, Northern Grain Insects Research Laboratory, Brookings, South Dakota, USA 57006

Abstract

Adult corn rootworm beetles, Diabrotica virgifera virgifera LeConte, were maintained at five fluctuating temperature regimens with daily average temperatures of 16.0, 19.5, 23.0, 26.5, and 30.0°C. The mean number of eggs laid per female was greatest (602) at 26.5°C and least (295) at 16.0°C. The median length of life decreased with increasing temperature from 13.8 weeks at 19.5°C to 7.9 weeks at 30.0°C. Parameters were estimated for nonlinear functions relating age-specific fecundity and age-specific survival to physiological age.

Résumé

Des adultes de la chrysomèle des racines Diabrotica virgifera virgifera LeConte ont été maintenus sous cinq régimes de température fluctuante dont la moyenne était de 16,0, 19,5, 23,0, 26,5 ou 30,0°C. La moyenne du nombre maximum d’oeufs pondus par femelle (602) a été obtenue à 26,5°C et celle du nombre minimal (295) à 16,0°C. La longévité médiane à diminué avec l’augmentation de la température, passant de 13,8 semaines à 19,5°C, à 7,9 semaines à 30,0°C. On a estimé les paramètres de fonctions non linéaires reliant la fécondité et la survie spécifiques de l’âge, à l’âge physiologique de l’insecte.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ball, H.J. 1957. On the biology and egg-laying habits of the western corn rootworm. J. econ. Ent. 50: 126128.Google Scholar
Bergman, M.K., and Turpin, F.T.. 1984. Impact of corn planting date on the population dynamics of corn rootworms (Coleoptera: Chrysomelidae). Environ. Ent. 13: 898901.CrossRefGoogle Scholar
Birch, L.C. 1948. The intrinsic rate of natural increase of an insect population. J. Anim. Ecol. 17: 1526.Google Scholar
Branson, T.F., and Jackson, J.J.. 1988. An improved diet for adult Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). J. Kansas ent. Soc. 61: 353355.Google Scholar
Branson, T.F., and Johnson, R.D.. 1973. Adult western corn rootworms: oviposition, fecundity, and longevity in the laboratory. J. econ. Ent. 66: 417418.CrossRefGoogle Scholar
Branson, T.F., and Krysan, J.L.. 1981. Feeding and oviposition behavior and life cycle strategies of Diabrotica: an evolutionary view with implications for pest management. Environ. Ent. 10: 826831.Google Scholar
Chiang, H.C. 1973. Bionomics of the northern and western corn rootworms. A. Rev. Ent. 18: 4772.CrossRefGoogle Scholar
Curry, G.L., and Feldman, R.M.. 1987. Mathematical Foundations of Population Dynamics. Texas A&M Univ. Press, College Station.Google Scholar
Duncan, D.B. 1955. Multiple range and multiple F tests. Biometrics 11: 142.CrossRefGoogle Scholar
Fisher, J.R. 1986. Development and survival of pupae of Diabrotica virgifera virgifera and D. undecimpunctata howardi (Coleoptera: Chrysomelidae) at constant temperatures and humidities. Environ. Ent. 15: 626630.Google Scholar
Graf, B., Baumgärtner, J., and Delucchi, V.. 1985. Life table statistics of three apple aphids, Dysaphis plantaginea, Rhopalosiphum insertum, and Aphis pomi (Homoptera, Aphididae), at constant temperatures. Z. ang. Ent. 99: 285294.Google Scholar
Guss, P.L., Branson, T.F., and Krysan, J.L.. 1976. Adaptation of a dry diet for adults of the western corn root-worm. J. econ. Ent. 69: 503505.Google Scholar
Hill, R.E. 1975. Mating, oviposition patterns, fecundity and longevity of the western corn rootworm. J. econ. Ent. 68: 311315.CrossRefGoogle Scholar
Hill, R.E., and Mayo, Z.B.. 1980. Distribution and abundance of corn rootworm species as influenced by topography and crop rotation in eastern Nebraska. Environ. Ent. 9: 122127.CrossRefGoogle Scholar
Jackson, J.J., and Elliott, N.C.. 1988. Temperature-dependent development of immature stages of the western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Environ. Ent. 17: 166171.CrossRefGoogle Scholar
Logan, P.A., Casagrande, R.A., Faubert, H.H., and Drummond, F.A.. 1985. Temperature-dependent development and feeding of immature Colorado potato beetles, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Environ. Ent. 14: 275283.Google Scholar
Mooney, E., and Turpin, F.T.. 1976. ROWSIM, a GASP IV based rootworm simulator. Purdue Univ. Agric. Exp. Stn. Res. Bull. 938.Google Scholar
Naranjo, S.E., and Sawyer, A.J.. 1987. Reproductive biology and survival of Diabrotica barberi (Coleoptera: Chrysomelidae): effect of temperature, food, and seasonal time of emergence. Ann. ent. Soc. Am. 80: 841848.Google Scholar
Naranjo, S.E., and Sawyer, A.J.. 1988. A temperature- and age-dependent simulation model of reproduction for the northern corn root-worm, Diabrotica barberi Smith and Lawrence (Coleoptera: Chrysomelidae). Can. Ent. 120: 117.Google Scholar
Piedrahita, O., Ellis, C.R., and Bogart, J.P.. 1985. Interaction of northern and western corn rootworm larvae (Coleoptera: Chrysomelidae) in a controlled environment. Environ. Ent. 14: 138141.CrossRefGoogle Scholar
Pinder, J.E. III, Wiener, J.G., and Smith, M.H.. 1978. The Weibull distribution: a new method of summarizing survivorship data. Ecology 59: 175179.Google Scholar
Ratte, H.T. 1984. Temperature and insect development. pp. 3366in Hoffman, K.H. (Ed.), Environmental Physiology and Biochemistry of Insects. Springer-Verlag, New York.CrossRefGoogle Scholar
SAS Institute. 1985. SAS User's Guide Statistics. SAS Institute, Cary, NC.Google Scholar
Sharpe, P.J.H., and DeMichele, D.W.. 1977. Reaction kinetics of poikilotherm development. J. Theor. Biol. 64: 649670.CrossRefGoogle ScholarPubMed
Short, D.E., and Hill, R.E.. 1972. Adult emergence, ovarian development, and oviposition sequence of the western corn rootworm in Nebraska. J. econ. Ent. 65: 685689.CrossRefGoogle Scholar
Southwood, T.R.E. 1978. Ecological Methods. Chapman and Hall, New York.Google Scholar
Taylor, F. 1981. Ecology and evolution of physiological time in insects. Am. Natur. 117: 123.Google Scholar