Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T05:07:13.102Z Has data issue: false hasContentIssue false

Phoretic mite associates of mountain pine beetle at the leading edge of an infestation in northwestern Alberta, Canada

Published online by Cambridge University Press:  03 January 2012

Boyd A. Mori*
Affiliation:
Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, CanadaT6G 2E9
Heather C. Proctor
Affiliation:
Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, CanadaT6G 2E9
David E. Walter
Affiliation:
Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, Canada T6G 2E9, and Invertebrate Zoology, Royal Alberta Museum, 12845 — 102 Avenue, Edmonton, Alberta, Canada T5N 0M6
Maya L. Evenden
Affiliation:
Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, CanadaT6G 2E9
*
1Corresponding author (e-mail: [email protected]).

Abstract

We identified species of mites phoretically associated with mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae: Scolytinae), collected from bolts of lodgepole pine, Pinus contorta Douglas ex Louden (Pinaceae), and pheromone-baited traps in northwestern Alberta, Canada. Mite load and species composition were compared between beetle sexes and with beetle emergence time and estimated body size. The vast majority of mites associated with D. ponderosae in Alberta belonged to three species: Proctolaelaps subcorticalis Lindquist (Acari: Mesostigmata: Melicharidae), Histiogaster arborsignis Woodring (Acari: Astigmatina: Acaridae), and Tarsonemus ips Lindquist (Acari: Prostigmata: Tarsonemidae). There was no difference in mite loads on male and female beetles recovered from bolts in the laboratory and those from pheromone-baited traps in the field. More mites were found on larger beetles in the laboratory, but only T. ips showed this pattern on field-trapped beetles. There was no relationship between total mite load or load by mite species and beetle emergence time in the laboratory, but total mite load on field-trapped beetles decreased over the collecting season (10 June – 3 September 2009) at five collection locations (Grovedale, Blueberry Mountain, Hythe, Evergreen Park, and Glenleslie). This study is the first to document the assemblage of phoretic mites on D. ponderosae in Alberta and will help to direct future research on their interactions.

Résumé

Nous avons identifié les espèces d'acariens phorétiques sur des dendroctones du pin ponderosa, Dendroctonus ponderosae Hopkins (Coleoptera : Curculionidae : Scolytinae), récoltés sur des billes de pin vrillé, Pinus contorta Douglas ex Louden (Pinaceae), et dans des pièges munis de phéromones dans le nord-ouest de l'Alberta, Canada. Les charges d'acariens et les compositions en espèces ont été comparées chez les coléoptères des deux sexes en fonction du moment de l'émergence et de la taille corporelle estimée. La grande majorité des acariens associés àD. ponderosae en Alberta appartiennent àtrois espèces, Proctolaelaps subcorticalis Lindquist (Acari : Mesostigmata : Melicharidae), Histiogaster arborsignis Woodring (Acari : Astigmatina : Acaridae) et Tarsonemus ips Lindquist (Acari : Prostigmata : Tarsonemidae). Il n'y a pas de différence de charge d'acariens entre les coléoptères mâles et femelles prélevés sur les billes en laboratoire, ni dans les pièges àphéromones en nature. Plus d'acariens se retrouvent en laboratoire sur les coléoptères plus grands, mais seul T. ips suit ce patron sur les coléoptères dans les pièges. Il n'y a pas de relation entre la charge totale d'acariens ou entre la charge en fonction des espèces d'acariens et le moment de l'émergence des coléoptères en laboratoire; cependant, la charge totale d'acariens sur les coléoptères capturés dans les pièges en nature diminue au cours de la saison de récolte (10 juin – 3 septembre 2009) aux cinq sites de capture (Grovedale, Blueberry Mountain, Hythe, Evergreen Park et Glenleslie). Notre étude est la première à caractériser le peuplement d'acariens phorétiques sur D. ponderosae en Alberta et aidera àorienter les recherches futures sur leurs interactions.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amman, G.D., and Cole, W.E. 1983. Mountain pine beetle dynamics in lodgepole pine forests. Part II: population dynamics. USDA Forest Service, Intermountain Forest and Range Experiment Station, General Technical Report INT-145. p. 59.Google Scholar
Atkins, M.D. 1960. A study of the flight of the Douglas-fir beetle Dendroctonus pseudotsugae Hopk. (Coleoptera: Scolytidae). II. Flight movements. The Canadian Entomologist, 92: 941954. doi:10.4039/Ent92941-12.CrossRefGoogle Scholar
Barras, S.J. 1970. Antagonism between Dendroctonus frontalis and the fungus Ceratocystis minor. Annals of the Entomological Society of America, 63: 11871190.CrossRefGoogle Scholar
Binns, E.S. 1982. Phoresy as migration – some functional aspects of phoresy in mites. Biological Reviews, 57: 571620. doi:10.1111/j.1469-185X.1982.tb00374.x.CrossRefGoogle Scholar
Cardoza, Y.J., Moser, J.C., Klepzig, K.D., and Raffa, K.F. 2008. Multipartite symbioses among fungi, mites, nematodes, and the spruce beetle, Dendroctonus rufipennis. Environmental Entomology, 37: 956963. PMID:18801261 doi:10.1603/0046-225X (2008)37[956:MSAFMN]2.0.CO;2.CrossRefGoogle ScholarPubMed
Cerezke, H.F. 1995. Egg gallery, brood production, and adult characteristics of mountain pine beetle, Dendroctonus ponderosae Hopkins, (Coleoptera:Scolytidae), in three pine hosts. The Canadian Entomologist, 127: 955965. doi:10.4039/Ent127955-6.Google Scholar
Franklin, R.T. 1970. Observations on the blue stainsouthern pine beetle relationship. Journal of the Georgia Entomological Society, 5: 5357.Google Scholar
Gilburn, A.S., Stewart, K.M., and Edward, D.A. 2009. Sex-biased phoretic mite load on two seaweed flies: Coelopa frigida and Coelopa pilipes. Environmental Entomology, 38: 16081612. PMID:20021755 doi:10.1603/022.038.0612.CrossRefGoogle ScholarPubMed
Grossman, J.D., and Smith, R.J. 2008. Phoretic mite discrimination among male burying beetle (Nicro-phorus investigator) hosts. Annals of the Entomological Society of America, 101: 266271. doi:10.1603/0013-8746(2008)101[266:PMDAMB]2.0.CO;2.CrossRefGoogle Scholar
Hofstetter, R.W., Cronin, J.T., Klepzig, K.D., Moser, J.C., and Ayres, M.P. 2006a. Antagonisms, mutualisms and commensalisms affect outbreak dynamics of the southern pine beetle. Oecologia, 147: 679691. doi:10.1007/s00442-005-0312-0.CrossRefGoogle ScholarPubMed
Hofstetter, R.W., Klepzig, K.D., Moser, J.C., and Ayres, M.P. 2006b. Seasonal dynamics of mites and fungi and their interaction with southern pine beetle. Environmental Entomology, 35: 2230. doi:10.1603/0046-225X-35.1.22.CrossRefGoogle Scholar
Hofstetter, R.W., Dempsey, T.D., Klepzig, K.D. and Ayres, M.P. 2007. Temperature-dependent effects on mutualistic, antagonistic, and commensalistic interactions among insects, fungi and mites. Community Ecology, 8: 4756. doi:10.1556/ComEc.8.2007.1.7.CrossRefGoogle Scholar
Huber, D.P.W., Aukema, B.H., Hodgkinson, R.S., and Lindgren, B.S. 2009. Successful colonization, reproduction, and new generation emergence in live interior hybrid spruce Picea engelmannii x glauca by mountain pine beetle Dendroctonus ponderosae. Agricultural and Forest Entomology, 11: 8389. doi:10.1111/j.1461-9563.2008.00411.x.CrossRefGoogle Scholar
Kinn, D.N. 1983. The lifecycle of Proctolaelaps dendroctoni Lindquist and Hunter (Acari: Ascidae): a mite associated with pine bark beetles. International Journal of Acarology, 9: 205210. doi:10.1080/01647958308683338.CrossRefGoogle Scholar
Kinn, D.N. and Witcosky, J.J. 1978. Variation in southern pine beetle attack height associated with phoretic uropodid mites. The Canadian Entomologist, 110: 249251. doi:10.4039/Ent110249-3.CrossRefGoogle Scholar
Klepzig, K.D. and Wilkens, R.T. 1997. Competitive interactions among symbiotic fungi of the southern pine beetle. Applied and Environmental Microbiology, 63: 621627. PMID:16535518.CrossRefGoogle ScholarPubMed
Lindquist, E.E. 1969. New species of Tarsonemus (Acarina: Tarsonemidae) associated with bark beetles. The Canadian Entomologist, 101 : 12911314. doi:10.4039/Ent1011291-12.CrossRefGoogle Scholar
Lindquist, E.E. 1971. New species of Ascidae (Acarina: Mesostigmata) associated with forest insect pests. The Canadian Entomologist, 103: 919942. doi:10.4039/Ent103919-7.CrossRefGoogle Scholar
Lindquist, E.E., and Bedard, W.D. 1961. Biology and taxonomy of mites of the genus Tarsonemoides (Acarina: Tarsonemidae) parasitizing eggs of bark beetles of the genus Ips. The Canadian Entomologist, 93: 982999. doi:10.4039/Ent93982-11.Google Scholar
Lindquist, E.E, and Hunter, P.E. 1965. Some mites of the genus Proctolaelaps Berlese (Acarina: Blattisociidae) associated with forest insect pests. The Canadian Entomologist, 97: 1532. doi:10.4039/Ent9715-1.Google Scholar
Lombardero, M.J., Ayres, M.P., Hofstetter, R.W., Moser, J.C. and Klepzig, K.D. 2003. Strong indirect interactions of Tarsonemus mites (Acarina: Tarsonemidae) and Dendroctonus frontalis (Coleoptera: Scolytidae). Oikos, 102: 243252. doi:10.1034/j.1600-0706.2003.12599.x.CrossRefGoogle Scholar
Lombardero, M.J., Klepzig, K.D., Moser, J.C., and Ayres, M.P. 2000. Biology, demography and community interactions of Tarsonemus (Acarina:Tarsonemidae) mites phoretic on Dendroctonus frontalis (Coleoptera: Scolytidae). Agricultural and Forest Entomology, 2: 193202. doi:10.1046/j.1461-9563.2000.00070.x.CrossRefGoogle Scholar
Lyon, R.L. 1958. A useful secondary sex character in Dendroctonus bark beetles. The Canadian Entomologist, 90: 582584. doi:10.4039/Ent90582-10.CrossRefGoogle Scholar
Magowski, W.L., and Moser, J.C. 2003. Redescription of Tarsonemus minimax and definition of its species-group in the genus Tarsonemus (Acari: Tarsonemidae) with descriptions of two new species. Annals of the Entomological Society of America, 96: 345368. doi:10.1603/0013-8746(2003)096[0345:ROTMAD]2.0.CO;2.CrossRefGoogle Scholar
Michon, G.P. 2009. Final Answers: surface area of an ellipsoid [online]. Available from http://www.numericana.com/answer/ellipsoid.htm#spheroid [accessed 26 April 2010].Google Scholar
Moser, J.C. 1975. Mite predators of the southern pine beetle. Annals of the Entomological Society of America, 68: 11131116.Google Scholar
Moser, J.C. 1976. Surveying mites (Acarina) phoretic on the southern pine beetle (Coleoptera: Scolytidae) with sticky traps. The Canadian Entomologist, 108: 809813. doi:10.4039/Ent108809-8.CrossRefGoogle Scholar
Moser, J.C. 1985. Use of sporothecae by phoretic Tarsonemus mites to transport ascospores of coniferous bluestain fungi. Transactions of the British Mycological Society, 84: 750753. doi:10.1016/S0007-1536(85)80138-8.CrossRefGoogle Scholar
Moser, J.C., and Bridges, J.R. 1986. Tarsonemus (Acarina: Tarsonemidae) mites phoretic on the southern pine beetle (Coleoptera: Scolytidae): attachment sites and number of bluestain (Ascomycetes: Ophiostomataceae) ascospores carried. Proceedings of the Entomological Society of Washington, 88: 297299.Google Scholar
Moser, J.C., Konrad, H., Blomquist, S.R., and Kirisits, T. 2010. Do mites phoretic on elm bark beetles contribute to the transmission of Dutch elm disease? Naturwissenschaften, 97: 219227. PMID:19967528 doi:10.1007/s00114-009-0630-x.Google Scholar
Moser, J.C., and Roton, L.M. 1971. Mites associated with southern pine bark beetles in Allen Parish, Louisiana. The Canadian Entomologist, 103: 17751798. doi:10.4039/Ent1031775-12.CrossRefGoogle Scholar
OConnor, B.M. 1990. Ecology and host associations of Histiogaster arborsignis (Acari: Acaridae) in the Great Lakes Region, particular in the Huron Mountains of northern Michigan. The Great Lakes Entomologist, 23: 205209.Google Scholar
OConnor, B.M. 1994. Life-history modifications in astigmatid mites. In Mites: ecological and evolutionary analyses of life-history patterns. Edited by Houck, M.A.. Chapman and Hall, New York, New York, USA. pp. 136159.CrossRefGoogle Scholar
Ono, H. 2003. The mountain pine beetle: scope of the problem and key issues in Alberta. In Mountain pine beetle symposium: challenges and solutions, Kelowna, BC, October 30—31, 2003. Edited by Shore, T.L., Brooks, J.E., and Stone, J.E.. Victoria, BC: Canadian Forest Service, Pacific Forestry Centre, Inf. Rep. BC-X-399. pp. 6266.Google Scholar
Pernek, M., Hrasovec, B., Matosevic, D., Pilas, I., Kirisits, T., and Moser, J.C. 2008. Phoretic mites of three bark beetles (Pityokteines spp.) on silver fir. Journal of Pest Science, 81: 3542. doi:10.1007/s10340-007-0182-9.CrossRefGoogle Scholar
Pureswaran, D.S., and Borden, J.H. 2003. Is bigger better? Size and pheromone production in the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). Journal of In-sect Behaviour, 16: 765782. doi:10.1023/B:JOIR.0000018319.37649.c4.Google Scholar
Rocha, S.L., Pozo-Velaquez, E., Faroni, L.R.D.A., and Guedes, R.N.C. 2009. Phoretic load of the parasitic mite Acarophenax lacunatus (Cross & Krantz) (Prostigmata: Acarophenacidae) affecting mobility and flight take-off of Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae). Journal of Stored Products Research, 45: 267271. doi:10.1016/j.jspr.2009.05.001.Google Scholar
Rodrigueiro, T.S.C., and Do Prado, A.P. 2004. Macrocheles muscadomesticae (Acari, Macrochelidae) and a species of Uroseius (Acari, Polyaspididae) phoretic on Musca domestica (Diptera, Muscidae): effects on dispersal and colonization of poultry manure. Iheringia Série Zoologia, 94: 181185.CrossRefGoogle Scholar
Safranyik, L., and Carroll, A.L. 2006. The biology and epidemiology of the mountain pine beetle in lodgepole pine forests. In The mountain pine beetle: a synthesis of biology, management, and impacts on lodgepole pine. Edited by Safranyik, L. and Wilson, B.. Victoria, BC. Natural Resources Canada, Canadian Forestry Service, Pacific Forestry Centre. pp. 166.Google Scholar
SAS Institute Inc. 2007. SYSTAT® version 12.0 for Windows®. SAS Institute Inc., Chicago, Illinois.Google Scholar
Takov, D., Pilarska, D., and Moser, J. 2009. Phoretic mites assoicted with spruce bark beetle Ips typographus L. (Curculionidae: Scolytinae) from Bulgaria. Acta Zoologica Bulgarica, 63: 293296.Google Scholar
Woodring, J.P. 1966. North American Tyroglyphidae (Acari). 111: The genus Histiogaster, with descriptions of four new species. Proceeding of the Louisiana Academy of Sciences, 29: 113136.Google Scholar
Walter, D.E., and Proctor, H.C. 1999. Mites: ecology, evolution, and behaviour. CABI Publishing: New York.CrossRefGoogle Scholar
Xu, D., Cui, J., Bansal, R., Hao, X., Liu, J., Chen, W., and Petersen, B.S. 2009. The ellipsoidal area ratio: an alternative anisotropy index for diffusion tensor imaging. Magnetic Resonance Imaging, 27: 311323. PMID:18835122 doi:10.1016/j.mri.2008.07.018.Google Scholar