Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T22:42:28.078Z Has data issue: false hasContentIssue false

Performance of the specialist herbivore Plutella xylostella (Lepidoptera: Plutellidae) on Brassicaceae and non-Brassicaceae species

Published online by Cambridge University Press:  02 April 2012

R.M. Sarfraz
Affiliation:
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9, and Department of Zoology and Biodiversity, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
L.M. Dosdall*
Affiliation:
Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
B.A. Keddie
Affiliation:
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
*
1 Corresponding author (e-mail: [email protected]).

Abstract

The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is considered oligophagous on Brassicaceae. We determined the preferences and performance of P. xylostella on canola, Brassica napus L., and flixweed, Descurainia sophia (L.) Webb ex Prantl (Brassicaceae), spider-plant, Cleome hassleriana Chod. (Capparaceae), and garden nasturtium, Tropaeolum majus L. (Tropaeolaceae). Females deposited most eggs on B. napus; T. majus was least preferred. The rate of survival from neonate to pupa was highest on B. napus followed by C. hassleriana, T. majus, and D. sophia. The rate of development of female larvae on Brassicaceae was similar to that on non-Brassicaceae; pupal development was slowest on non-hosts. Female pupae were heaviest on B. napus and lightest on D. sophia. Adult females were heaviest when reared on B. napus and lightest on T. majus and D. sophia. Females reared on D. sophia had the smallest forewings; forewing areas for females on other plants were similar. Females reared on B. napus and C. hassleriana lived longer without food than those reared on D. sophia or T. majus. Males reared on T. majus lived for the shortest time without food. This specialist herbivore can exploit a range of food plants, including suboptimal Brassicaceae and species from other families. This trait appears to facilitate survival and reproduction of P. xylostella when preferred food plants are limiting or absent.

Résumé

La fausse teigne des crucifères, Plutella xylostella (L.) (Lepidoptera: Plutellidae), est considérée comme un oligophage des Brassicaceae. Nous avons déterminé les préférences et la performance de P. xylostella sur Brassica napus L. et Descurainia sophia (L.) Webb ex Prantl (Brassicaceae), sur Cleome hassleriana Chod. (Capparaceae) et sur Trapaeolum majus L. (Tropaeolaceae). Les femelles déposent un maximum d'oeufs sur les plants de B. napus et montrent le moins de préférence pour les plants de T. majus. La survie de la naissance à la nymphose est la plus importante sur B. napus, puis chez C. hassleriana, T. majus et D. sophia. Le développement larvaire des femelles est semblable chez les Brassicaceae et les non Brassicaceae; le développement nymphal est le plus lent chez les plants non hôtes. Les nymphes femelles sont les plus lourdes sur B. napus et les plus légères sur D. sophia. Les femelles adultes sont les plus lourdes lorsqu’élevées sur B. napus et les plus légères sur T. majus et D. sophia. Les femelles élevées sur D. sophia ont la surface de l'aile antérieure la plus petite; les surfaces des ailes antérieures sont semblables chez les femelles provenant des autres plantes. Les femelles élevées sur B. napus et C. hassleriana survivent plus longtemps à jeun que celles gardées sur D. sophia ou T. majus. Les mâles élevées sur T. majus survivent le moins longtemps sans nourriture. Cet herbivore spécialisé peut exploiter une gamme de plantes nourricières, y compris les espèces suboptimales de Brassiceae et des espèces d'autres familles. Cette caractéristique semble faciliter la survie et la reproduction de P. xylostella lorsque les plantes nourricières préférées sont limitantes ou absentes.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anonymous. 2006. Wildflowers of eastern North America [online]. Available from http://www.nearctica.com/flowers/bandc/Cspino.htm [accessed 31 May 2009].Google Scholar
Armbruster, P., and Hutchinson, R.H. 2002. Pupal mass and wing length as indicators of fecundity in Aedes albopictus and Aedes geniculatus (Diptera: Culicidae). Journal of Medical Entomology, 39: 669704.CrossRefGoogle ScholarPubMed
Barker, J.E., Futon, A., Evans, K.A., and Powell, G. 2006. The effects of kaolin particle film on Plutella xylostella behaviour and development. Pest Management Science, 62: 498504. PMID: 16602083 doi:10.1002/ps.1191.Google Scholar
Begum, S., Tsukuda, R., Fujisaki, K., and Nakasuji, F. 1996. The effects of wild cruciferous host plants on morphology, reproductive performance and flight activity in the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Researches on Population Ecology, 38: 257263. doi:10.1007/BF02515735.CrossRefGoogle Scholar
Bernays, E.A., and Chapman, R.F. 1994. Evolution of host range. In Host-plant selection by phytophagous insects. Contemporary topics in entomology 2. Edited by Bernays, E.A. and Chapman, R.F.. Chapman and Hall, New York. pp. 258287.CrossRefGoogle Scholar
Bernays, E.A., and Graham, M. 1988. On the evolution of host specificity in phytophagous arthropods. Ecology, 69: 886892. doi:10.2307/1941237.CrossRefGoogle Scholar
Camara, M.D. 1997. A recent host range expansion in Junonia coenia Hübner (Nymphalidae): oviposition preference, survival, growth, and chemical defense. Evolution, 51: 873884. doi:10.2307/2411162.Google ScholarPubMed
Canola Council of Canada. 2006. Canadian canola industry [online]. Available from http://www.canolacouncil.org/ind_overview.aspx [accessed 7 November 2009].Google Scholar
Evenden, M.L., Lopez, M.S., and Keddie, B.A. 2006. Body size, age, and disease influence female reproductive performance in Choristoneura conflictana (Lepidoptera: Tortricidae). Annals of the Entomological Society of America, 99: 837844. doi:10.1603/0013-8746(2006)99[837:BSAADI]2.0.CO;2.CrossRefGoogle Scholar
Foster, C. 2001. Great annuals: from bud to seed. Conran Octopus Ltd., London, United Kingdom.Google Scholar
Fraser, S.M., and Lawton, J.H. 1994. Host range expansion by British moths onto introduced conifers. Ecological Entomology, 19: 127137. doi:10.1111/j.1365-2311.1994.tb00402.x.Google Scholar
Fry, J.D. 1990. Trade-offs in fitness on different hosts: evidence from a selection experiment with a phytophagous mite. The American Naturalist, 136: 569580. doi:10.1086/285116.CrossRefGoogle Scholar
Gould, F. 1979. Rapid host range evolution in a population of the phytophagous mite Tetranychus urticae Koch. Evolution, 33: 791802. doi:10.2307/2407646.CrossRefGoogle Scholar
Gupta, P.D., and Thorsteinson, A.J. 1960 a. Food plant relationship of diamondback moth (Plutella maculipennis (Curt.)). I. Gustation and olfaction in relation to botanical specificity of larvae. Entomologia Experimentalis et Applicata, 3: 241250. doi:10.1007/BF00301510.CrossRefGoogle Scholar
Gupta, P.D., and Thorsteinson, A.J. 1960 b. Food plant relationship of diamondback moth (Plutella maculipennis (Curt.)). II. Sensory regulation of oviposition of the adult female. Entomologia Experimentalis et Applicata, 3: 305314.Google Scholar
Harcourt, D.G. 1957. Biology of the diamondback moth, Plutella maculipennis (Curt.) (Lepidoptera: Plutellidae), in eastern Ontario. II. Life-history, behaviour, and host relationship. The Canadian Entomologist, 12: 554564.CrossRefGoogle Scholar
Heywood, V.H. 1993. Flowering plants of the world. Oxford University Press, New York.Google Scholar
Hillyer, R.J., and Thorsteinson, A.J. 1969. The influence of the host plant or males on ovarian development or oviposition in the diamondback moth, Plutella maculipennis (Curt.). Canadian Journal of Zoology, 47: 805816. doi:10.1139/z69-139.CrossRefGoogle Scholar
Hsiao, T.H. 1978. Host plant adaptations among geographic populations of the Colorado potato beetle. Entomologia Experimentalis et Applicata, 24: 237247. doi:10.1007/BF02385096.CrossRefGoogle Scholar
Idris, A.B., and Grafius, E. 1996. Effects of wild and cultivated host plants on oviposition, survival, and development of diamondback moth (Lepidoptera: Plutelliade) and its parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae). Environmental Entomology, 25: 825833.CrossRefGoogle Scholar
Kjaer, A. 1974. The natural distribution of glucosinolates: a uniform group of sulfur-containing glucosides. In Chemistry in Botanical Classification: Proceedings of the 25th Nobel Symposium, 20–25 August 1973, Södergarn, Lidingö, Sweden. Edited by Bendz, G. and Santesson, J.. Nobel Foundation, Stockholm, Sweden, and Academic Press, London, United Kingdom. pp. 229234.Google Scholar
Littell, R.C., Stroup, W.W., and Freund, R.J. 2002. SAS® for linear models. 4th ed. SAS Institute Inc., Cary, North Carolina.Google Scholar
Löhr, B., and Gathu, R. 2002. Evidence of adaptation of diamondback moth, Plutella xylostella (L.), to pea, Pisum sativum L. Insect Science and its Application, 22: 161174.Google Scholar
Marazzi, C., Patrian, B., and Städler, E. 2004. Secondary metabolites of the leaf surface affected by sulfur fertilization and perceived by the diamondback moth. Chemoecology, 14: 8186. doi:10.1007/s00049-003-0264-y.CrossRefGoogle Scholar
Mithen, R. 1992. Leaf glucosinolate profiles and their relationship to pest and disease resistance in oilseed rape. Euphytica, 63: 7183. doi:10.1007/BF00023913.CrossRefGoogle Scholar
Mitich, L.W. 1996. Intriguing world of weeds: flixweed (Descurainia sophia). Weed Technology, 10: 974977.CrossRefGoogle Scholar
Morishita, D.W. 1991. Dalmatian toadflax, yellow toadflax, black henbane, and tansy mustard: importance, distribution and management. In Noxious range weeds. Edited by James, L.F., Evans, J.O., Ralphs, M.H., and Child, R.D.. Westview Press, Boulder, Colorado.Google Scholar
Muhamad, O., Tsukuda, R., Oki, Y., Fujisaki, K., and Nakasuji, F. 1994. Influences of wild crucifers on life history traits and flight ability of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Researches on Population Ecology, 36: 5362. doi:10.1007/BF02515085.CrossRefGoogle Scholar
Pittendrigh, B.R., and Pivnick, K.A. 1993. Effects of a host plant, Brassica juncea, on calling behaviour and egg maturation in the diamondback moth, Plutella xylostella. Entomologia Experimentalis et Applicata, 68: 117126. doi:10.1007/BF02380530.Google Scholar
Price, P.W., Bouton, C.E., Gross, P., McPheron, B.A., Thompson, J.N., and Weis, A.E. 1980. Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annual Review of Ecology and Systematics, 11: 4165. doi:10.1146/annurev.es.11.110180.000353.Google Scholar
Rausher, M.D. 1982. Population differentiation in Euphdryas editha butterflies: larval adaptation to different hosts. Evolution, 36: 581590. doi:10.2307/2408102.CrossRefGoogle ScholarPubMed
Renwick, J.A.A., and Lopez, K. 1999. Experience-based food consumption by larvae of Pieris rapae: addiction to glucosinolates? Entomologia Experimentalis et Applicata, 91: 5158. doi:10.1046/j.1570-7458.1999.00465.x.CrossRefGoogle Scholar
Renwick, J.A.A., and Radke, C.D. 1990. Plan constituents mediating oviposition by the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). Phytophaga, 3: 3746.Google Scholar
Sarfraz, M., Dosdall, L.M., and Keddie, B.A. 2006 Diamondback moth – host plant interactions: implications for pest management. Crop Protection, 25: 625639. doi:10.1016/j.cropro.2005.09.011.CrossRefGoogle Scholar
Sarfraz, M., Dosdall, L.M., and Keddie, B.A. 2007 Resistance of some cultivated Brassicaceae to infestations by Plutella xylostella (L.) (Lepidoptera: Plutellidae). Journal of Economic Entomology, 100: 215224. PMID:17370831 doi:10.1603/0022-0493(2007)100[215:ROSCBT]2.0.CO;2.Google Scholar
Sarfraz, M., Dosdall, L.M., and Keddie, B.A. 2009 Fitness of the parasitoid Diadegma insulare is affected by its host's food plants. Basic and Applied Ecology, 10: 563572. doi:10.1016/j.baae. 2009.01.006.CrossRefGoogle Scholar
SAS Institute Inc. 2004. SAS user's guide: statistics. SAS Institute Inc., Cary, North Carolina.Google Scholar
Scriber, J.M., and Slansky, F. 1981. The nutritional ecology of immature insects. Annual Review of Entomology, 26: 183211. doi:10.1146/annurev. en.26.010181.001151.CrossRefGoogle Scholar
Shelton, A.M., Cooley, R.J., Kroening, M.K., Wilsey, W.T., and Eigenbrode, S.D. 1991. Comparative analysis of two rearing procedures for diamondback moth (Lepidoptera: Plutellidae). Journal of Entomological Science, 26: 1726.CrossRefGoogle Scholar
Singer, M.C., Thomas, C.D., and Parmesan, C. 1993. Rapid human-induced evolution of insect–host association. Nature (London), 366: 681683. doi:10.1038/366681a0.CrossRefGoogle Scholar
Stephens, J.M. 2003. Garden nasturtium, Tropaeolum majus L. [online]. Available from http://edis.ifas.ufl.edu/document_mv099 [accessed 31 May 2009].Google Scholar
Talekar, N.S., and Shelton, A. M. 1993. Biology, ecology, and management of the diamondback moth. Annual Review of Entomology, 38: 275301. doi:10.1146/annurev.en.38.010193.001423.CrossRefGoogle Scholar
Thomas, C.D., Ng, D., Singer, M.C., Mallet, J.L.B., Parmesan, C., and Billington, H.L. 1987. Incorporation of European weed into the diet of a North American herbivore. Evolution, 41: 892901. doi:10.2307/2408897.CrossRefGoogle ScholarPubMed
Thompson, J.N. 1988. Variation in preference and specificity in monophagous and oligophagous swallowtail populations. Evolution, 42: 118128. doi:10.2307/2409120.CrossRefGoogle Scholar
Thorsteinson, A.J. 1953. The chemotactic responses that determine host specificity in an oligophagous insect (Plutella maculipennis (Curt.) Lepidoptera). Canadian Journal of Zoology, 31: 5272. doi:10.1139/z53-006.CrossRefGoogle Scholar
van Loon, J.J.A., Wang, C.Z., Nielsen, J.K., Gols, R., and Qiu, Y.T. 2002. Flavonoids from cabbage are feeding stimulants for diamondback moth larvae additional to glucosinolates: chemoreception and behaviour. Entomologia Experimentalis et Applicata, 104: 2734. doi:10.1046/j.1570-7458.2002.00987.x.CrossRefGoogle Scholar
White, R.R. 1987. The trouble with butterflies. Journal of Research on the Lepidoptera, 25: 207212.Google Scholar
Williams, I.S. 1999. Slow-growth, high-mortality — a general hypothesis, or is it? Ecological Entomology, 24: 490495. doi:10.1046/j.1365-2311.1999.00217.x.CrossRefGoogle Scholar