Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T21:17:52.708Z Has data issue: false hasContentIssue false

Ovarian development and lipid reserves are affected by mating delays in three species of Anthocoris (Hemiptera: Anthocoridae)

Published online by Cambridge University Press:  02 April 2012

David R. Horton*
Affiliation:
USDA-ARS, 5230 Konnowac Pass Road, Wapato, Washington 98951, United States of America
Tamera M. Lewis
Affiliation:
USDA-ARS, 5230 Konnowac Pass Road, Wapato, Washington 98951, United States of America
Lisa G. Neven
Affiliation:
USDA-ARS, 5230 Konnowac Pass Road, Wapato, Washington 98951, United States of America
*
1Corresponding author (e-mail: [email protected]).

Abstract

Mating is necessary to bring about ovarian maturation in females of Anthocoridae and related taxa (Cimicidae). The objectives of this study were to determine how forced delays in mating affect extent and rate of oocyte development, duration of the preoviposition period, and levels of lipid reserves in three species of Anthocoris. Extent of oocyte development by unmated females differed among the three species. In unmated A. tomentosus, the basal oocyte failed to show any increase in size with increasing female age, whereas oocytes in unmated A. nemoralis and A. whitei exhibited some growth beginning 2 days after eclosion. One consequence of these differences among species is that a forced delay in mating (of 3 or 10 days) had less of an effect on A. whitei and A. nemoralis than on A. tomentosus, in terms of the length of the preoviposition period measured from the time of mating. Mated females of A. nemoralis and A. whitei grew larger oocytes than unmated females within 2 days of mating, whereas the same phenomenon took 4 days in A. tomentosus. Embryos became visible in the eggs of mated A. nemoralis and A. whitei 2–3 days after mating, compared with 5 days after mating for A. tomentosus. Mature eggs with egg caps were visible within 3, 4, and 6 days after mating for A. nemoralis, A. whitei, and A. tomentosus, respectively. In all three species, unmated females 10 days after eclosion had significantly higher levels of lipids allocated to nonreproductive tissues than similarly aged females that had been mated on the day of eclosion, suggesting that there was a trade-off between allocation of resources to eggs and allocation to somatic reserves.

Résumé

L'accouplement est requis pour la maturation ovarienne chez les femelles d'Anthocoridae et des taxons apparentés (Cimicidae). Les objectifs de notre étude sont de déterminer comment des délais forcés de l'accouplement affectent le degré et le taux de maturation de l'oocyte, la durée de la période de pré-ponte et les concentrations de lipides chez trois espèces d'Anthocoris. Le degré de maturation des oocytes chez les femelles non accouplées varie chez les trois espèces. L'oocyte de base chez des femelles d'A. tomentosus non accouplées ne montre aucun accroissement en taille en fonction de l'âge de la femelle, alors que ceux de femelles non accouplées d'A. nemoralis et d'A. whitei montrent une certaine croissance commençant 2 jours après l'éclosion. Une conséquence de ces différences entre les espèces est qu'un délai forcé de l'accouplement (de 3 ou de 10 jours) a moins d'impact sur A. whitei et A. nemoralis que sur A. tomentosus, en ce qui a trait à la longueur de la période de pré-ponte mesurée à partir du moment de l'accouplement. Les femelles accouplées d'A. nemoralis et d'A. whitei développent des oocytes plus grands que les femelles non accouplées en moins de 2 jours de l'accouplement; le même phénomène prend 4 jours chez A. tomentosus. Les embryons sont visibles dans les oeufs de femelles d'A. nemoralis et d'A. whitei accouplées en 2–3 jours après l'accouplement et en 5 jours après l'accouplement chez A. tomentosus. Les oeufs à maturité avec opercule sont visibles respectivement aux jours 3, 4 et 6 après l'accouplement, chez A. nemoralis, A. whitei et A. tomentosus. Chez les femelles non accouplées des trois espèces, 10 jours après l'éclosion, il y a des concentrations significativement plus importantes de lipides assignés aux tissus non reproductifs que chez des femelles de même âge qui se sont accouplées le jour de leur éclosion; cela laisse croire qu'il y a un compromis entre l'allocation des ressources aux oeufs et aux réserves somatiques.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, N.H. 1962. Growth and fecundity of Anthocoris spp. reared on various prey (Heteroptera: Anthocoridae). Entomologia Experimentalis et Applicata, 5: 4052.CrossRefGoogle Scholar
Angelo, M.J., Slansky, F. Jr., 1984. Body building by insects: trade-offs in resource allocation with particular reference to migratory species. Florida Entomologist, 67: 2241.CrossRefGoogle Scholar
Bell, W.J., and Bohm, M.K. 1975. Oosorption in insects. Biological Reviews of the Cambridge Philosophical Society, 50: 373396.CrossRefGoogle ScholarPubMed
Carayon, J. 1953. Existence d'un double orifice génital et d'un tissu conducteur des spermatozöides chez les Anthocorinae (Hemipt. Anthocoridae). Comptes Rendus Hebdomadaires des Seances de l'Académie des Sciences, 236: 12061208.Google ScholarPubMed
Carayon, J. 1970. Action du sperme sur la maturation des ovaires chez les Hémiptères a insémination traumatique. Colloques Internationaux du Centre National de la Recherche Scientifique, 189: 215247.Google Scholar
Cobben, R.H. 1968. Evolutionary trends in Heteroptera. Part 1. Eggs, architecture of the shell, gross embryology and eclosion. Centre for Agricultural Publishing and Documentation, Wageningen, the Netherlands.Google Scholar
Davey, K.G. 1965. Reproduction in the insects. W.H. Freeman and Company, San Francisco, California.Google Scholar
Davis, N.T. 1956. The morphology and functional anatomy of the male and female reproductive systems of Cimex lectularius L. (Heteroptera, Cimicidae). Annals of the Entomological Society of America, 49: 466493.CrossRefGoogle Scholar
Davis, N.T. 1964. Studies on the reproductive physiology of the Cimicidae (Hemiptera). I. Fecundation and egg maturation. Journal of Insect Physiology, 10: 947963.CrossRefGoogle Scholar
Eberhard, W.G. 1996. Female control: sexual selection by cryptic female choice. Princeton University Press, Princeton, New Jersey.CrossRefGoogle Scholar
Ellers, J. 1996. Fat and eggs: an alternative method to measure the trade-off between survival and reproduction in insect parasitoids. Netherlands Journal of Zoology, 46: 227235.CrossRefGoogle Scholar
Engelmann, F. 1970. The physiology of insect reproduction. Pergamon Press, Oxford.Google Scholar
Hinton, H.E. 1964. Sperm transfer in insects and the evolution of haemocoelic insemination. Symposium of the Royal Entomological Society of London, 2: 95107.Google Scholar
Horton, D.R., Lewis, T.M., Hinojosa, T., and Broers, D.A. 1998. Photoperiod and reproductive diapause in the predatory bugs Anthocoristomentosus, A. antevolens, and Deraeocoris brevis (Heteroptera: Anthocoridae, Miridae) with information on overwintering sex ratios. Annals of the Entomological Society of America, 91: 8186.CrossRefGoogle Scholar
Horton, D.R., Hinojosa, T., and Lewis, T.M. 2000. Mating preferences, mating propensity, and reproductive traits in Anthocoris nemoralis (Heteroptera: Anthocoridae): a comparison of California and United Kingdom populations. Annals of the Entomological Society of America, 93: 663672.CrossRefGoogle Scholar
Horton, D.R., Lewis, T.M., and Hinojosa, T. 2001. Copulation duration and probability of insemination in Anthocoris whitei (Hemiptera: Anthocoridae) as a 336 Can. Entomol. Vol. 137, 2005 function of male body size. The Canadian Entomologist, 133: 109117.CrossRefGoogle Scholar
Horton, D.R., Lewis, T.M., and Hinojosa, T. 2002. Copulation duration in three species of Anthocoris (Heteroptera: Anthocoridae) at different temperatures and effects on insemination and ovarian development. Pan-Pacific Entomologist, 78: 4355.Google Scholar
Lattin, J.D. 1999. Bionomics of the Anthocoridae. Annual Review of Entomology, 44: 207231.CrossRefGoogle ScholarPubMed
Lattin, J.D. 2000. Minute pirate bugs (Anthocoridae). In Heteroptera of economic importance. Edited by Schaefer, C.W. and Panizzi, A.R.. CRC Press, London. pp. 607637.CrossRefGoogle Scholar
Lee, R.D. 1954. Oviposition by the poultry bug. Journal of Economic Entomology, 47: 224226.CrossRefGoogle Scholar
Legaspi, J.C., and Legaspi, B.C. Jr., 1998. Life-history trade-offs in insects, with emphasis on Podisus maculiventris (Heteroptera: Pentatomidae). In Predatory Heteroptera: their ecology and use in biological control. Edited by Coll, M. and Ruberson, J.R.. Proceedings of the Thomas Say Publications in Entomology, Entomological Society of America, Lanham, Maryland. pp. 7187.Google Scholar
Legaspi, J.C., and O'Neil, R.J. 1994. Lipids and egg production of Podisus maculiventris (Heteroptera: Pentatomidae) under low rates of predation. Environmental Entomology, 23: 12541259.CrossRefGoogle Scholar
Mellanby, K. 1939. Fertilization and egg production in the bed-bug, Cimex lectularius L. Parasitology, 31: 193199.CrossRefGoogle Scholar
Nylin, S., and Gotthard, K. 1998. Plasticity in life-history traits. Annual Review of Entomology, 43: 6383.CrossRefGoogle ScholarPubMed
SAS Institute Inc. 2001. The SAS system. Version 8.2 for Windows [computer program]. SAS Institute Inc., Cary, North Carolina.Google Scholar
Shimizu, J.T. 1967. A biology of Anthocoris antevolens White, a predator of pear psylla (Hemiptera: Anthocoridae). M.Sc. thesis, University of California, Berkeley, California.Google Scholar
Southwood, T.R.E. 1956. The structure of the eggs of the terrestrial Heteroptera and its relationship to the classification of the group. Transactions of the Royal Entomological Society of London, 108: 163221.CrossRefGoogle Scholar
Southwood, T.R.E. 1977. Habitat, the templet for ecological strategies? Journal of Animal Ecology, 46: 337365.CrossRefGoogle Scholar
Van Handel, E. 1985. Rapid determination of total lipids in mosquitoes. Journal of the American Mosquito Control Association, 1: 302304.Google ScholarPubMed
Winer, B.J. 1971. Statistical principles in experimental design. 2nd ed. McGraw-Hill, New York.Google Scholar
Ziegler, R., and Ibrahim, M.M. 2001. Formation of lipid reserves in fat body and eggs of the yellow fever mosquito, Aedes aegypti. Journal of Insect Physiology, 47: 623627.CrossRefGoogle ScholarPubMed