Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T10:26:32.811Z Has data issue: false hasContentIssue false

One function of sex — an empirical study of genetic and ecological variation

Published online by Cambridge University Press:  02 April 2012

N. Gilbert
Affiliation:
Genetics Field Station, University of Cambridge, 219d Huntingdon Road, Cambridge CB3 0DL, United Kingdom
D.A. Raworth*
Affiliation:
Agriculture and Agri-Food Canada, P.O. Box 1000, Agassiz, British Columbia, Canada V0M 1A0
G.R. Allen
Affiliation:
School of Agricultural Science and The Tasmanian Institute of Agricultural Reseach, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia
*
2 Corresponding author (e-mail: [email protected]).

Abstract

The question “why sex?” is a longstanding fundamental puzzle in biology. Although there may be several answers, no satisfactory theory has emerged. We present an argument in favour of one function of sex, derived from a study of the population genetics and ecology of the cabbage butterfly, Pieris rapae (L.) (Lepidoptera: Pieridae), on three continents between 1984 and 2009, and from previously published studies of other organisms. We provide evidence that responsiveness to directional selection (RDS), a measure related to “narrow-sense heritability”, can be dramatically reduced by truncation selection in a single generation and rapidly restored within a few generations. Viewing a population as a collection of sexual families, we show that rapid restoration of RDS after truncation selection is essential to maintain population variance. The only known mechanism that will rapidly restore RDS is sexual recombination. We therefore conclude that in P. rapae, sex restores the genetic variation that a population needs to match unpredictable environmental variation, despite selection tending to reduce that genetic variation.

Résumé

La question de savoir à quoi sert la sexualité demeure depuis longtemps une énigme fondamentale de la biologie. Bien qu’il puisse y avoir plusieurs réponses, il n’est apparu aucune théorie satisfaisante. Nous présentons un argument qui appuie une des fonctions de la sexualité tiré d'une étude de la génétique de population et de l'écologie de la piéride du chou, Pieris rapae (L.) (Lepidoptera : Pieridae), sur trois continents, de 1984 à 2009, ainsi que d'études antérieures sur d'autres organismes. Nous apportons des données qui indiquent que capacité de réagir à une sélection directionnelle (RDS), une mesure reliée à l'«héritabilité dans le sens strict», peut être réduite de façon spectaculaire par une sélection par troncature en une seule génération et restaurée en quelques générations. Considérant la population comme un ensemble de familles sexuelles, nous montrons que la restauration rapide de la RDS après une sélection par troncature est essentielle pour maintenir la variance de la population. Le seul mécanisme connu qui peut restaurer rapidement la RDS est la recombinaison sexuelle. Nous concluons donc que, chez P. rapae, la sexualité restaure la variation génétique dont la population a besoin pour contrer la variation environnementale imprévisible, malgré que la sélection tende à réduire la variation génétique.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barton, N.H., and Charlesworth, B. 1998. Why sex and recombination? Science (Washington, D.C.), 281: 19861990. PMID:9748151 doi:10.1126/science. 281.5385.1986.Google Scholar
Barton, N.H., and Keightley, P.D. 2002. Understanding quantitative genetic variation. Nature Reviews Genetics, 3: 1121. PMID:11823787 doi:10.1038/nrg700.Google Scholar
Bell, G. 1982. The masterpiece of nature: the evolution and genetics of sexuality. Croom Helm, London, United Kingdom.Google Scholar
Bell, G. 2008. Selection: the mechanism of evolution. 2nd ed. Oxford University Press, Oxford, United Kingdom.Google Scholar
Bos, M., and Scharloo, W. 1973. The effects of disruptive and stabilizing selection on body size in Drosophila melanogaster. II. Analysis of responses in the thorax selection lines. Genetics, 75: 695708. PMID:4205048.Google Scholar
Bryant, E.H., and Meffert, L.M. 1996. Non-additive genetic structuring of morphometric variation in relation to a population bottleneck. Heredity, 77: 168176. doi:10.1038/hdy.1996.121.Google Scholar
Bryant, E.H., McCommas, S.A., and Combs, L.M. 1986. The effect of an experimental bottleneck upon quantitative genetic variation in the housefly. Genetics, 114: 11911211. PMID:17246359.Google Scholar
Burke, M.K., Dunham, J.P., Shahrestani, P., Thornton, K.R., Rose, M.R., and Long, A.D. 2010. Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature, 467: 587590. doi:10.1038/nature09352.CrossRefGoogle ScholarPubMed
Butlin, R. 2002. The costs and benefits of sex: new insights from old asexual lineages. Nature Reviews Genetics, 3: 311317. PMID:11967555 doi:10.1038/nrg749.Google Scholar
Carson, H.L. 1990. Increased genetic variance after a population bottleneck. Trends in Ecology and Evolution, 5: 228230. doi:10.1016/0169-5347(90) 90137-3.Google Scholar
Cavalli-Sforza, L.L., and Bodmer, W.F. 1971. The genetics of human populations. W.H. Freeman, San Francisco, California.Google Scholar
Daubeny, C.J.B. 1861. Remarks on the final causes of the sexuality of plants. In Report of the 30thMeeting of the British Association for the Advancement of Science, 1860, Oxford, United Kingdom. John Murray, London, United Kingdom. pp. 109110.Google Scholar
de Visser, J.A.G.M., and Elena, S.F. 2007. The evolution of sex: empirical insights into the roles of epistasis and drift. Nature Reviews Genetics, 8: 139149. PMID:17230200 doi:10.1038/nrg1985.Google Scholar
Endler, J.A. 1986. Natural selection in the wild. Princeton University Press, Princeton, New Jersey.Google Scholar
Falconer, D.S., and Mackay, F.C. 1996. Introduction to quantitative genetics. Longman, Harlow, United Kingdom.Google Scholar
Fisher, R.A. 1918. The correlations between relatives on the assumption of Mendelian inheritance. Transactions of the Royal Society of Edinburgh, 52: 399433.CrossRefGoogle Scholar
Fisher, R.A. 1930. The genetical theory of natural selection. Clarendon Press, Oxford, United Kingdom.Google Scholar
Galton, F. 1889. Natural inheritance. MacMillan, London, United Kingdom.Google Scholar
Ghiselin, M.T. 1974. The economy of nature and the evolution of sex. University of California Press, Berkeley, California.Google Scholar
Gilbert, N. 1980. Comparative dynamics of a singlehost aphid. II. Theoretical consequences. Journal of Animal Ecology, 49: 371380. doi:10.2307/4252.CrossRefGoogle Scholar
Gilbert, N. 1984 a. Control of fecundity in Pieris rapae. I. The problem. Journal of Animal Ecology, 53: 581588. doi:10.2307/4536.Google Scholar
Gilbert, N. 1984 b. Control of fecundity in Pieris rapae. III. Synthesis. Journal of Animal Ecology, 53: 599609. doi:10.2307/4538.Google Scholar
Gilbert, N. 1986. Control of fecundity in Pieris rapae. IV. Patterns of variation and their ecological consequences. Journal of Animal Ecology, 55: 317329. doi:10.2307/4711.Google Scholar
Gilbert, N. 1989. Biometrical interpretation. Oxford University Press, Oxford, United Kingdom.Google Scholar
Gilbert, N., and Raworth, D.A. 1996. Insects and temperature — a general theory. The Canadian Entomologist, 128: 113. doi:10.4039/Ent1281-1.Google Scholar
Gilbert, N.E. 1967. Additive combining abilities fitted to plant breeding data. Biometrics, 23: 4549. PMID:6050471 doi:10.2307/2528280.Google Scholar
Haldane, J.B.S. 1954. The measurement of natural selection. Caryologia, 6(Supplement): 480487.Google Scholar
Hickey, D.A. 2000. The evolution of sex and recombination. In Evolutionary genetics from molecules to morphology. Edited by Singh, R.S. and Krimbas, C.B.. Cambridge University Press, Cambridge, United Kingdom. pp. 317330.Google Scholar
Jinks, J.L., Perkins, J.M., and Pooni, H.S. 1973. The incidence of epistasis in normal and extreme environments. Heredity, 31: 263269. doi:10.1038/hdy.1973.81.Google Scholar
Jones, R.E., and Ives, P.M. 1979. The adaptiveness of searching and host selection behaviour in Pieris rapae (L.). Australian Journal of Ecology, 4: 7586. doi:10.1111/j.1442-9993.1979.tb01199.x.CrossRefGoogle Scholar
Kaufman, P.K., Enfield, F.D., and Comstock, R.E. 1977. Stabilizing selection for pupa weight in Tribolium castaneum. Genetics, 87: 327341. PMID: 17248766.CrossRefGoogle ScholarPubMed
Kendall, M.G., and Stuart, A. 1963. The advanced theory of statistics. 2nd ed. Griffin Press, London, United Kingdom.Google Scholar
Kingsolver, J.G., Hoekstra, H.E., Hoekstra, J.M., Berrigan, D., Vignieri, S.N., Hill, C.E., et al. 2001. The strength of phenotypic selection in natural populations. American Naturalist, 157: 245261. PMID:18707288 doi:10.1086/319193.Google Scholar
Kondrashov, A.S. 1993. Classification of hypotheses on the advantage of amphimixis. Journal of Heredity, 84: 372387. PMID:8409359.Google Scholar
Morris, R.F. 1971. Observed and simulated changes in genetic quality in natural populations of Hyphantria cunea. The Canadian Entomologist, 103: 893906. doi:10.4039/Ent103893-6.Google Scholar
Raworth, D.A. 1994. Estimation of degree-days using temperature data recorded at regular intervals. Environmental Entomology, 23: 893899.CrossRefGoogle Scholar
Reeve, E.C.R. 1953. Studies in quantitative inheritance III. Heritability and genetic correlation in progeny tests using different mating systems. Journal of Genetics, 51: 520541. doi:10.1007/BF02982942.CrossRefGoogle Scholar
Sauer, K.P., and Grüner, C. 1988. Aestival dormancy the cabbage moth Mamestra brassicae L. 2. Geographical variation in two traits. Oecologia, 76: 8996.Google Scholar
Scharloo, W., Hoogmoed, M.S., and Ter Kuile, A. 1967. Stabilizing and disruptive selection on mutant character in Drosophila. Genetics, 56: 709726. PMID:6061662.Google Scholar
Spieth, H.R. 1985. Adaptation of the life cycle growing periods of varied duration of the migratory butterfly Pieris brassicae L. (Lepidoptera: Pieridae). Zoologische Jahrbücher Abteilung für Systematik Ökologie und Geographie der Tiere, 112: 3569.Google Scholar
Stearns, S.C. 1990. The evolutionary maintenance of sexual reproduction. Journal of Genetics, 69: 110. doi:10.1007/BF02931662.Google Scholar
Tantawy, A.O., and Tayel, A.A. 1970. Studies natural populations of Drosophila. X. Effects disruptive and stabilizing selection on wing length and the correlated response in Drosophila melanogaster. Genetics, 65: 121132. PMID:5479388.Google Scholar
Thoday, J.M. 1959. Effects of disruptive selection: Genetic flexibility. Heredity, 13: 187203. doi: 10.1038/hdy.1959.22.Google Scholar
Weismann, A. 1904. The evolution theory. Arnold Press, London, United Kingdom.Google Scholar
Yang, J., Benyamin, B., McEvoy, B.P., Gordon, S., Henders, A.K., Nyholt, D.R., et al. 2010. Common SNPs explain a large proportion of the heritability for human height [online]. NatureGenetics. [Accessed 20 June 2010.] doi:10.1038/ng.608.Google Scholar