Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T05:09:38.723Z Has data issue: false hasContentIssue false

NATURAL MORTALITY OF THE GYPSY MOTH ALONG A GRADIENT OF INFESTATION

Published online by Cambridge University Press:  31 May 2012

V.G. Nealis
Affiliation:
Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 W Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
P.M. Roden
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, P.O. Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7
D.A. Ortiz
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, P.O. Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7

Abstract

Natural mortality of gypsy moth [Lymantria dispar (L.) (Lepidoptera: Lymantriidae)] eggs, larvae, and pupae was examined at several locations along a gradient of infestation in Ontario, Canada. Most mortality of eggs was the result of exposure to winter weather. This mortality was mitigated in egg masses located near ground level where they benefited from snow cover. At least six species of parasitoids were found attacking gypsy moth larvae and pupae. The most common species were present in the same rank order of abundance at all sites. Identified pathogens were also present in most sites but their relative abundance varied greatly. The mycopathogen Entomophaga maimaiga Humber, Shimazu & Soper (Zygomycetes: Entomophthorales) was found at all sites and usually was responsible for the highest levels of observed, single-source mortality at the site.

Résumé

La mortalité naturelle de la spongieuse, le Lymantria dispar (L.) (Lepidoptera : Lymantriidae), a été étudiée au stade d’oeuf, de chenille et de chrysalide en plusieurs endroits répartis le long d’un gradient d’infestation, en Ontario (Canada). L’exposition aux basses températures hivernales était la principale cause de mortalité au stade d’oeuf. La mortalité hivernale était plus faible parmi les masses d’oeufs situées près du sol, ces dernières bénéficiant de la protection fournie par la couverture de neige. Au moins six espèces de parasitoïdes ont été observées en association avec la spongieuse aux stades larvaire et nymphal. Les espèces de parasitoïdes les plus communes ont été trouvées dans le même ordre d’abondance dans tous les sites. Des agents entomopathogènes ont également été isolés dans la majorité des sites, mais leur abondance relative fluctuait considérablement d’un endroit à l’autre. Le champignon entomopathogène Entomophaga maimaiga Humber, Shimazu & Soper (Zygomycetes : Entomophthorales) était présent dans tous les sites et constituait chaque fois la principale source de mortalité.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, R.A., Owens, C.D., Shapiro, M., Tardiff, J.R. 1981. Development of mass-rearing technology. pp. 599633in Doane, C.C., McManus, M.L. (Eds.), The Gypsy Moth: Research Toward Integrated Pest Management. US Department of Agriculture Technical Bulletin 1584Google Scholar
Bourchier, R.S., Nealis, V.G. 1992. Patterns of hyperparasitism of Cotesia melanoscela (Hymenoptera: Braconidae) in southern Ontario. Environmental Entomology 21: 907–12CrossRefGoogle Scholar
Coulson, J.R., Fuester, R.W., Schaefer, P.W., Ertle, L.R., Kelleher, J.S., Rhoads, L.D. 1986. Exploration for and importation of natural enemies of the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), in North America: an update. Proceedings of the Entomological Society of Washington 88: 461–75Google Scholar
Elkinton, J.S., Liebhold, A.M. 1990. Population dynamics of gypsy moth in North America. Annual Review of Entomology 35: 571–96CrossRefGoogle Scholar
Griffiths, K.J., Quednau, F.W. 1984. Lymantria dispar (L.), Gypsy Moth (Lepidoptera: Lymantriidae). pp. 303–10 in Kelleher, J.S., Hulme, M.A. (Eds.), Biological Control Programmes against Insects and Weeds in Canada 1969–1980. CAB International Institute of Entomology, London, EnglandGoogle Scholar
Hajek, A.E. 1997. Fungal and viral epizootics in gypsy moth (Lepidoptera: Lymantriidae) populations in central New York. Biological Control 10: 5868CrossRefGoogle Scholar
Hajek, A.E., Elkinton, J.S., Witcosky, J.J. 1996. Introduction and spread of the fungal pathogen Entomophaga maimaga (Zygomycetes: Entomophthorales) along the leading edge of gypsy moth (Lepidoptera: Lymantriidae) spread. Environmental Entomology 25: 1235–47CrossRefGoogle Scholar
Hajek, A.E., Roberts, D.W. 1992. Field diagnosis of gypsy moth (Lepidoptera: Lymantriidae) larval mortality caused by Entomophaga maimaiga and the gypsy moth nuclear polyhedrosis virus. Environmental Entomology 21: 706–13CrossRefGoogle Scholar
Hajek, A.E., Snyder, A.L. 1992. Natural enemies: tools for integrated pest management. US Forest Service Northeastern Area Report NA–PR–02–92Google Scholar
Kaupp, W.J., Ebling, P.M. 1993. Horseradish peroxidase-labelled probes and enhanced chemiluminescence to detect baculoviruses in gypsy moth and eastern spruce budworm larvae. Journal of Virological Methods 44: 8998CrossRefGoogle ScholarPubMed
Keizerm, A. 1991. Results of forest insect and disease surveys in the eastern region of Ontario, 1990. Forestry Canada Miscellaneous Report 107Google Scholar
Leonard, D.E. 1972. Survival in a gypsy moth population exposed to low winter temperatures. Environmental Entomology 1: 549–54CrossRefGoogle Scholar
Liebhold, A.M., Elkinton, J.S., Wallner, W.E. 1986. Effect of burlap bands on between-tree movement of late-instar gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae). Environmental Entomology 15: 373–79CrossRefGoogle Scholar
Majchrowicz, I., Yendol, W.G. 1973. Fungi isolated from the gypsy moth. Journal of Economic Entomology 66: 823–24CrossRefGoogle Scholar
Mills, N.J., Nealis, V.G. 1992. European field collections and Canadian releases of Ceranthia samarensis (Dipt.; Tachinidae), a parasitoid of the gypsy moth. Entomophaga 37: 181–91CrossRefGoogle Scholar
Nealis, V.G., Erb, S. 1993. A sourcebook for management of the gypsy moth. Ministry of Supply and Services Canada, Catalogue No. Fo42–193/1993EGoogle Scholar
Reardon, R.C. 1976. Parasite incidence and ecological relationships in field populations of gypsy moth larvae and pupae. Environmental Entomology 5: 981–87CrossRefGoogle Scholar
Reardon, R.C. 1981. Parasites. pp. 299421in Doane, C.C., McManus, M.L. (Eds.), The Gypsy Moth: Research Toward Integrated Pest Management. US Department of Agriculture Technical Bulletin 1584Google Scholar
Simons, E.E., Reardon, R.C., Ticehurst, M. 1981. Selected parasites and hyperparasites of the gypsy moth, with keys to adults and immatures. US Department of Agriculture Handbook 540Google Scholar
Sullivan, C.R., Wallace, D.R. 1972. The potential northern dispersal of the gypsy moth, Porthetria dispar (Lepidoptera: Lymantriidae). The Canadian Entomologist 104: 1349–55CrossRefGoogle Scholar
Ticehurst, M., Fusco, R.A., Kling, R.P., Unger, J. 1978. Observations on parasites of gypsy moth in first cycle infestations in Pennsylvania from 1974–1977. Environmental Entomology 7: 355–58CrossRefGoogle Scholar
Van Driesche, R.G. 1983. Meaning of “percent parasitism” in studies of insect parasitoids. Environmental Entomology 12: 1611–22CrossRefGoogle Scholar