Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T03:35:01.680Z Has data issue: false hasContentIssue false

MULTITROPHIC MODELS OF PREDATOR–PREY ENERGETICS: III. A CASE STUDY IN AN ALFALFA ECOSYSTEM1

Published online by Cambridge University Press:  31 May 2012

Abstract

The field population dynamics of pea aphid (Acyrthosiphon pisum) and blue alfalfa aphid (A. kondoi) in alfalfa (Medicago sativa), as influenced by weather, competitors (Egyptian alfalfa weevil = EAW, Hypera brunneipennis), predation from coccinellids (Hippodamia convergens) and harvesting practices, are examined with a stochastic multitrophic level simulation model. The model incorporates a demand-driven functional-response model to estimate prey consumption, and a metabolic pool model to determine the rates and priorities of food allocation to respiration, growth, reproduction, and egestion.

The model results compare favorably with field data, and are used to examine the effects of removal of each of the above factors on the dynamics of the aphids. The model shows that the observed density of EAW did not affect the aphid dynamics, but did reduce the standing crop of alfalfa. The predator H. convergens had a significant effect on the population dynamics of the aphids and the plant. Harvesting greatly affected the aphid population dynamics, as well as the dynamics of plant growth and reserve accumulation. However, high temperatures mediated through species-specific respiration costs and possibly a fungal pathogen were responsible for the observed dominance of blue aphid populations in the cool parts of the year and pea aphid populations during warmer parts of the year.

Résumé

La dynamique des populations des aphides Acyrthosiphon pisum et A. kondoi dans la luzerne (Medicago sativa) sur le terrain, telle qu'affectée par le climat, les compétiteurs (le charançon Hypera brunneipennis), la prédation par les coccinelles (Hippodamia convergens) et les méthodes de récolte, a été étudiée à l'aide d'un modèle de simulation probabilistique décrivant simultanément plusieurs niveaux trophiques. Le modèle comprend un sous-modèle de réponse fonctionnelle régulé par la demande et permettant d'estimer la consommation de proies, ainsi qu'un sous-modèle de réserve métabolique permettant de déterminer les vitesses de transfert et les priorités gouvernant la répartition de la nourriture entre la respiration, la croissance, la reproduction et l'égestion.

Les résultats du modèle se comparent favorablement aux données du terrain, et sont utilisés pour examiner les effets de l'absence de chacun des facteurs ci-haut mentionnés sur la dynamique des aphides. Les résultats ont montré que la densité observée de H. brunneipennis n'a pas affecté la dynamique des aphides bien qu'elle ait réduit la biomasse de la luzerne. Le prédateur H. convergens a affecté significativement la dynamique de population des pucerons et la plante. La coupe a beaucoup affecté la dynamique de population des aphides et la dynamique de croissance et d'accumulation de réserves de la plante. Cependant, les hautes températures agissant via les coûts respiratoires caractéristiques de chaque espèce, ainsi qu'un pathogène fongique, ont permis d'expliquer la dominance des populations de A. kondoi durant les périodes fraîches de l'année et des populations de A. pisum durant les périodes chaudes.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abkin, M. A. and Wolf, C.. 1976. Distributed delay routines. Department of Agricultural Economics, Michigan State University, East Lansing, Class Document No. 8.Google Scholar
Barlow, C. A., Randolph, P. A., and Randolph, J. C.. 1977. Effects of pea aphids, Acyrthosiphon pisum (Homoptera: Aphididae), on growth and productivity of pea plants Pisum sativum. Can. Ent. 109: 14911502.CrossRefGoogle Scholar
Baumgaertner, J. U., Frazer, B. D., Gilbert, N., Gill, B., Gutierrez, A. P., Ives, P. M., Nealis, V., Raworth, D. A., and Summers, C. G.. 1981 a. Coccinellids (Coleoptera) and aphids (Homoptera). Can. Ent. 113: 9751048.CrossRefGoogle Scholar
Baumgaertner, J. U., Gutierrez, A. P., and Summers, C. G.. 1981 b. The influence of aphid prey consumption on searching, behavior, weight increase, developmental time and mortality of Chrysopa carnea (Neuroptera: Chrysopidae) and Hippodamia convergens (Coleoptera: Coccinellidae) larvae. Can. Ent. 113: 10071014.CrossRefGoogle Scholar
Beddington, J. R., Hassell, M. P., and Lawton, J. H.. 1976. The components of arthropod predation. II. The predation rate of increase. J. Anim. Ecol. 45: 165186.CrossRefGoogle Scholar
Bieri, M., Baumgaertner, J., Delucchi, V., Bianchi, G., and Von Ark, R.. The developmental biology of Acyrthosiphon pisum Harris as affected by constant temperatures and host plant varieties. Mitt. schweiz. ent. Ges. (in press).Google Scholar
Butler, G. D. and Richie, P. L.. 1970. Development of Chrysopa carnea at constant and fluctuating temperatures. J. econ. Ent. 63: 10281030.CrossRefGoogle Scholar
Campbell, A. and Mackauer, M.. 1975. Thermal constants for development of pea aphid (Homoptera: Aphididae) and some of its parasites. Can. Ent. 107: 419423.CrossRefGoogle Scholar
Campbell, A., Frazer, B. D., Gilbert, N., Gutierrez, A. P., and Mackauer, M.. 1974. Temperature requirements of some aphids and their parasites. J. appl. Ecol. 11: 419423.CrossRefGoogle Scholar
Clark, L. R., Geier, P. W., Hughes, R. D., and Morris, R. F.. 1967. The Ecology of Insect Populations in Theory and Practice. Methuen. 232 pp.Google Scholar
Cock, M. J. W. 1978. The assessment of preference. J. Anim. Ecol. 47: 805816.CrossRefGoogle Scholar
Cuff, W. R. and Hardman, J. M.. 1980. A development of the Leslie matrix formulation for restructuring and extending an ecosystem model: The infestation of stored wheat by Sitophilus oryzae. Ecological Modelling 9: 281305.CrossRefGoogle Scholar
Curry, G. L. and Feldman, R. M.. 1978. Foundations of stochastic development. J. theor. Biol. 74: 397410.CrossRefGoogle ScholarPubMed
Daley, P. F. 1981. Photosynthesis and carbon balance in weevil damaged alfalfa (Coleoptera: Curculionidae). Ph.D. Thesis, University of California, Berkeley.Google Scholar
Duelli, P. 1981. Ein funktionelles Konzept fuer die Begriffe Dispersal and Migration. Dargestellt anhand der Ausbreitungsdynamik der Florfliege Chrysopa carnea Steph. Mitt. dtsch. Ges. Allg. angew. Ent. 3: 4952.Google Scholar
Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Clarendon, Oxford.CrossRefGoogle Scholar
Fitzpatrick, E. A. and Nix, H. A.. 1970. The climatic factor in Australian grassland ecology. pp. 326in Moore, R.M. (Ed.), Australian Grasslands. Australian National University Press, Canberra.Google Scholar
Frazer, B. D. and Gilbert, N.. 1976. Coccinellids and aphids: A quantitative study of the impact of adult lady birds (Coleoptera: Coccinellidae) preying on field populations of pea aphids (Homoptera: Aphididae). J. ent. Soc. Brit. Columb. 73: 3356.Google Scholar
Getz, W. M. and Gutierrez, A. P.. 1982. A perspective on systems analysis in crop production and insect pest management. A. Rev. Ent. 27: 447466.CrossRefGoogle Scholar
Gilbert, N. and Gutierrez, A. P.. 1973. A plant-aphid-parasite relationship. J. Anim. Ecol. 42: 323340.CrossRefGoogle Scholar
Gilbert, N., Gutierrez, A. P., Frazer, B. D., and Jones, R. E.. 1976. Ecological Relationships. Freeman, N.Y.Google Scholar
Gilbert, N. and Hughes, R. D.. 1971. A model of an aphid population—three adventures. J. Anim. Ecol. 40: 525534.CrossRefGoogle Scholar
Glen, D. M. 1973. The food requirements of Blepharidopterus angularus (Heteroptera: Miridae) as a predator of the lime aphid, Eucallipterus tiliae. Entomologia exp. appl. 16: 255267.CrossRefGoogle Scholar
Gutierrez, A. P. 1968. A study of aphid hyperparasitism, with special reference to Charips victrix (Westwood) (Hymenoptera: Cynipidae). Ph.D. Thesis, University of California, Berkeley.Google Scholar
Gutierrez, A. P., Baumgaertner, J. U., and Hagen, K. S.. 1981. A conceptual model for growth, development and reproduction in the ladybird beetle, Hippodamia convergens (Coleoptera: Coccinellidae). Can. Ent. 113: 2133.CrossRefGoogle Scholar
Gutierrez, A. P., Butler, G. D. Jr., Wang, Y., and Westphal, D.. 1977. The interaction of pink bollworm (Lepidoptera: Gelechiidae), cotton and weather: A detailed model. Can. Ent. 109: 14571468.CrossRefGoogle Scholar
Gutierrez, A. P., Christensen, J. B., Merritt, C. M., Loew, W. B., Summers, C. G., and Cothran, W. R.. 1976. Alfalfa and the Egyptian alfalfa weevil (Coleoptera: Curculionidae). Can. Ent. 108: 635648.CrossRefGoogle Scholar
Gutierrez, A. P., Falcon, L. A., Loew, W., Leipzig, P. A., and van den Bosch, R.. 1975. An analysis of cotton production in California: A model for Acala cotton and the effects of defoliators on its yield. Environ. Ent. 4: 125136.CrossRefGoogle Scholar
Gutierrez, P. A., Falcon, L. A., and van den Bosch, R.. 1974. Cotton Production in California—A Simulation: in Modelling for Pest Management—Concepts, Techniques and Applications, USA/USSR, Tummula, R. L., Haynes, D. L. and Croft, B. H. (Eds.), pp. 135144.Google Scholar
Gutierrez, A. P. and Getz, W. M.. In press. Predator-prey interactions in arthropods. In Shoemaker, C. S. and Ruesink, W. (Eds.), Agroecosystems Modelling. Wiley, N.Y.Google Scholar
Gutierrez, A. P., Morgan, D. J., and Havenstein, D. E.. 1971. The ecology of Aphis craccivora Koch and subterranean clover stunt virus. I. The phenology of aphid populations and the epidemiology of virus in pastures in southeast Australia. J. appl. Ecol. 8: 699721.CrossRefGoogle Scholar
Gutierrez, A. P. and Regev, U.. 1983. The economics of fitness and adaptedness: The interaction of sylvan cotton (Gossypium hirsutum L.) and the boll weevil (Anthonomus grandis Boh.)—an example. Oecologia Generalis 4: 271287.Google Scholar
Gutierrez, A. P., Summers, C. G., and Baumgaertner, J. U.. 1980. The phenology and distribution of aphids in California alfalfa as modified by lady beetle predation (Coleoptera: Coccinellidae). Can. Ent. 112: 489495.CrossRefGoogle Scholar
Gutierrez, A. P. and Wang, Y.. 1976. Applied population ecology: Models for crop production and pest management. In Norton, G. and Holling, C. S. (Eds.), Proc. Conf. Pest Management, 25–29 October 1976. Laxenburg, Austria.Google Scholar
Hagen, K. S. 1950. Fecundity of Chrysopa californica as affected by synthetic foods. J. econ. Ent. 43: 101104.CrossRefGoogle Scholar
Hagen, K. S. and Sluss, R. R.. 1966. Quantity of aphids required for reproduction by Hippodamia spp. in the laboratory. pp. 4759in Hodek, I. (Ed.), Ecology of Aphidophagous Insects. Czechoslovak Acad. Sci., Prague.Google Scholar
Hassell, M. P. 1978. The Dynamics of Arthropod Predator–Prey Systems. Princeton University Press. 273 pp.Google ScholarPubMed
Hassell, M. P., Lawton, J. H., and Beddington, J. R.. 1976. The components of arthropod predation. I. The prey death rate. J. Anim. Ecol. 45: 135164.CrossRefGoogle Scholar
Holling, C. S. 1966. The functional response of invertebrate predators to prey density. Mem. ent. Soc. Can. 48. 86 pp.Google Scholar
Huffaker, C. B. (Ed.). 1980. New Technology of Pest Control. Wiley, N.Y.500 pp.Google Scholar
Hughes, R. D. 1963. Population dynamics of the cabbage aphid, Brevicoryne brassicae (L.). J. Anim. Ecol. 32: 393426.CrossRefGoogle Scholar
Hughes, R. D. and Gilbert, N.. 1968. A model of an aphid population—A general statement. J. Anim. Ecol. 37: 553563.CrossRefGoogle Scholar
Ives, P. M. 1981. Estimation of coccinellid numbers and movement in the field. Can. Ent. 113: 981997.CrossRefGoogle Scholar
Lawton, J. H., Hassell, M. P., and Beddington, J. R.. 1975. Prey death rates and rate of increase of arthropod predator populations. Nature 255: 6062.CrossRefGoogle Scholar
Lefkovich, L. P. 1966. A theoretical evaluation of population growth after removing individuals from some age groups. Bull. ent. Res. 57: 437445.CrossRefGoogle Scholar
Leslie, P. H. 1945. On the use of matrices in certain population mathematics. Biometrika 33: 183212.CrossRefGoogle ScholarPubMed
Levins, R. 1975. Evolution in communities near equilibrium. pp. 1650in Cody, M. C. and Diamond, J. M. (Eds.), Ecology and Evolution of Communities. Harvard Univ. Press, Cambridge.Google Scholar
Llewellyn, M. and Qureshi, A. L.. 1979. The energies of Megoura viciae reared on different parts of the broad bean plant (Vicia fabae). Entomologia exp. appl. 26: 127135.CrossRefGoogle Scholar
Mackauer, M. 1983. Quantitative assessment of Aphidius smithi (Hymenoptera: Aphidiidae): fecundity, intrinsic rate of increase and functional response. Can. Ent. 115: 399415.CrossRefGoogle Scholar
Manetsch, T. J. 1976. Time varying distributed delays and their use in aggregate models of large systems. IEEE Trans. Systems, Man, Cybern. 6: 547553.CrossRefGoogle Scholar
May, R. M. 1979. The structure and dynamics of ecological communities. pp. 385407in Anderson, R. M., Turner, B. D. and Taylor, L. R. (Eds.), Population Dynamics. Blackwell, Melbourne.Google Scholar
May, R. M. and Hassell, M. P.. 1981. The dynamics of multi parasitoid-host interactions. Am. Nat. 117: 234261.CrossRefGoogle Scholar
Messenger, P. S. 1964. The influence of rhythmically fluctuating temperatures on the development and reproduction of the spotted alfalfa aphid, Therioaphis maculata. J. econ. Ent. 57: 7176.CrossRefGoogle Scholar
Mills, N. J. 1981. Some aspects of the rate of increase of coccinellids. Ecological Ent. 6: 293299.CrossRefGoogle Scholar
Mills, N. J. 1982. Satiation and the functional response: a test of a new model. Ecological Ent. 7: 305315.CrossRefGoogle Scholar
Murdoch, N. W. 1969. Switching in general predators: experiments on predator specificity and stability of prey populations. Ecological Monogr. 39: 335354.CrossRefGoogle Scholar
Neuenschwander, P., Hagen, K. S., and Smith, R. F.. 1975. Predation on aphids in California's alfalfa fields. Hilgardia 43: 5378.CrossRefGoogle Scholar
Pim, S. L. and Lawton, J. H.. 1977. The number of trophic levels in ecological communities. Nature 268: 329331.CrossRefGoogle Scholar
Petrusewicz, K. and MacFadyen, A.. 1970. Productivity of Terrestrial Animals: Principles and Methods. IBP Handbk 13. Blackwell, Oxford.Google Scholar
Pickering, J. and Gutierrez, A. P.. Differential impact of a fungal epizootic on the community composition of Acrythosiphon aphids. In progress.Google Scholar
Randolph, P. A., Randolph, J. C., and Barlow, C. A.. 1975. Age-specific energetics of the pea aphid, Acyrthosiphon pisum. Ecology 56: 357369.CrossRefGoogle Scholar
Salas-Aguilar, J. 1976. Studies on Orius tristicolor (White) in northern California. M.S. Thesis, University of California, Davis.Google Scholar
Schoener, T. 1973. Population growth regulation by intraspecific competition for energy or time: Some simple presentations. Theor. Pop. Biol. 4: 5684.CrossRefGoogle ScholarPubMed
Sharpe, P. J. H. and DeMichele, D. W.. 1977. Reaction kinetics of poikilotherm development. J. theor. Biol. 64: 649670.CrossRefGoogle ScholarPubMed
Siddiqui, W. H., Barlow, C. A., and Randolph, P. A.. 1973. Effects of some constant and alternating temperatures on population growth of the pea aphid, Acyrthosiphon pisum (Homoptera: Aphididae). Can. Ent. 105: 145156.CrossRefGoogle Scholar
Sinko, J. W. and Streifer, W.. 1967. A new model for age-structure of a population. Ecology 48: 910918.CrossRefGoogle Scholar
Solomon, M. E. 1949. The natural control of animal populations. J. Anim. Ecol. 18: 135.CrossRefGoogle Scholar
Tanaka, K. and Ito, Y.. 1982. Different responses in respiration between predaceous and phytophagous lady beetles (Coleoptera: Coccinellidae) to starvation. Res. Pop. Ecol. 24: 132141.CrossRefGoogle Scholar
van den Bosch, R., Schlinger, E. I., Lagace, C. F., and Hall, J. C.. 1966. Parasitization of Acyrthosiphon pisum by Aphidius smithi, a density-dependent process in nature (Homoptera, Aphididae) (Hymenoptera, Aphidiidae). Ecology 47: 10491055.CrossRefGoogle Scholar
Vansickle, J. 1977. Attrition in distributed delay models. IEEE Trans. Systems, Man, Cybern. 7: 635638.CrossRefGoogle Scholar
Wang, Y. H. and Gutierrez, A. P.. 1980. An assessment of the use of stability analyses in population ecology. J. Anim. Ecol. 49: 435452.CrossRefGoogle Scholar
Wang, Y. H., Gutierrez, A. P., Oster, G., and Daxl, R.. 1977. A population model for plant growth and development: Coupling cotton-herbivore interactions. Can. Ent. 109: 13591374.CrossRefGoogle Scholar
Ward, S. A. and Dixon, A. F. G.. 1982. Selective resorption of aphid embryos and habitat changes relative to life span. J. Anim. Ecol. 51: 859864.CrossRefGoogle Scholar
Welch, S. M., Croft, B. A., Brunner, J. F., and Micheles, M. F.. 1978. PETE: An extension phenology modeling system for management of multi-species pest complexes. Environ. Ent. 7: 487494.CrossRefGoogle Scholar