Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-03T00:08:20.809Z Has data issue: false hasContentIssue false

A MORPHOMETRIC APPROACH TO THE TAXONOMY OF THE GENUS CERAMIDA (COLEOPTERA: SCARABAEOIDEA: MELOLONTHIDAE)

Published online by Cambridge University Press:  31 May 2012

Isabel Sanmartín
Affiliation:
Departamento Biodiversidad y Biología Evolutiva (Entomología), Museo Nacional de Ciencias Naturales (C.S.I.C.), cl José Gutiérrez Abascal, 2, 28006 Madrid, Spain
Fermín Martín-Piera*
Affiliation:
Departamento Biodiversidad y Biología Evolutiva (Entomología), Museo Nacional de Ciencias Naturales (C.S.I.C.), cl José Gutiérrez Abascal, 2, 28006 Madrid, Spain
*
1Author to whom all correspondence should be addressed (E-mail: [email protected]).

Abstract

The taxonomy of the genus Ceramida Baraud, 1987, some species of which are severe pests, is considered difficult because of a lack of reliable diagnostic characters. We propose a new approach to the taxonomy of this genus by studying the efficacy of morphometric characters for species discrimination employing multivariate analysis. All members of the genus were included in the analysis. The seven morphometric characters considered were all found to be diagnostic at me species level: width of clypeus at base and at mid-length, and length of clypeus, full body, antennal club and stem, and apical segment of maxillary palp. The most informative character is the length of the antennal club relative to body size. This character divides the genus into three morphological groups. The ratios traditionally employed in the taxonomy of this genus cannot be used as discrete characters because there are no gaps in their range of variation. Our discriminant analysis produced several classification functions that serve as a new taxonomic tool to distinguish between morphologically similar species. Eleven species are recognized within the genus and eight new synonymies are proposed.

Résumé

La taxonomie du genre Ceramida Baraud, 1987, dont plusieurs espèces sont des ravageurs importants, est rendue difficile par l’absence de bons caractères diagnostiques. Nous proposons ici une nouvelle approche à l’étude de la taxonomie de ce genre, approche qui a recours à une analyse multidimensionnelle pour évaluer l’efficacité des caractères diagnostiques. Toutes les espèces du genre ont été intégrées dans l’analyse. Les sept caractères morphométriques examinés se sont avérés aptes à établir les différences entre les espèces : largeur du clypéus à la base et à milongueur, longueur du clypéus, longueur totale, longueur de la massue antennaire et de sa tige, longueur du segment apical du palpe maxillaire. Le meilleur caractère est la longueur de la massue antennaire relativement à la longueur totale du corps. Ce caractère établit l’existence de trois groupes morphologiques. Les rapports couramment utilisés dans la taxonomie de ce genre ne peuvent être utilisés comme caractères distinctifs, car leur échelle de variation est continue. Notre analyse discriminante a révélé l’existence de plusieurs fonctions de classification qui constituent de nouveaux outils taxonomiques pour distinguer des espèces morphologiquement semblables. Onze espèces sont considérées comme valides au sein du genre et huit nouvelles synonymies sont proposées.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecht, G.H., Gelvin, B.R., Hartman, S.E. 1993. Ratios as a size adjustment in morphometrics. American Journal of Physical Anthropology 91: 441–68CrossRefGoogle ScholarPubMed
Alvarado, M., Serrano, A., Durán, J.M., De la Rosa, A. 1996. Problemática de los gusanos blancos (Coleoptera, Scarabaeidae) en el olivar de la provincia de Sevilla. Boletín Sanidad Vegetal Plagas 22: 319–28Google Scholar
Atchley, W.R., Gaskins, G.T., Anderson, D. 1976. Statistical properties of ratios I. Empirical results. Systematic Zoology 25: 137–48CrossRefGoogle Scholar
Atchley, W.R., Nordheim, E.V., Gunsett, F.C., Crump, P.L. 1982. Geometric and probabilistic aspects of statistical distance functions. Systematic Zoology 31(4): 445–60CrossRefGoogle Scholar
Báguena, L. 1955. Observaciones sobre las especies ibéricas de Elaphocera Gené. Eos 31 (1–2): 128–53Google Scholar
Baraud, J. 1975. Révision des espèces ibériques du genre Elaphocera Gené (Col., Scarabaeoidea). Nouvelle Revue d'Entomologie 5(1): 5765Google Scholar
Baraud, J. 1985. Coléoptères Scarabaeoidea. Faund du nord de l'Afrique du Maroc au Sinai. Encyclopédie Entomologique, XLVI. Paris: Editions LechevalierGoogle Scholar
Baraud, J. 1992. Coléoptères Scarabaeoidea d'Europe. Faune de France et régions limitrophes, 78. Lyon: Société Linnéenne de Lyon et Fédération Francaise des Sociétés de Sciences NaturellesGoogle Scholar
Belfiore, C. 1996. Identification and discrimination of Electrogena species by numerical methods (Ephemeroptera: Heptageniidae). Systematic Entomology 21: 113CrossRefGoogle ScholarPubMed
Branco, T. 1981. Contribution à la connaisance des Elaphocera Gené ibériques: quatre nouvelles espèces du Portugal (Col. Scarabaeoidea, Melolonthidae). Bulletin de la Société Entomologique de France 86: 124–44CrossRefGoogle Scholar
Carson, H.L., Val, J.C., Simon, C.M., Archie, J.W. 1982. Morphometric evidence for incipient speciation in Drosophila silvestris from the island of Hawaii. Evolution 36: 132–40CrossRefGoogle ScholarPubMed
Claridge, M.F., Gillham, C. 1992. Variation in populations of leafhoppers and planthoppers (Auchenor-rhyncha): biotypes and biological species. pp. 241259in Sorensen, J.T., Foottit, R.G. (Eds.), Ordination in the study of morphology, evolution and systematics of insects. Applications and quantitative genetic rationals. Amsterdam: Elsevier Science PublishersGoogle Scholar
Cook, D. 1987. Sexual selection in dung beetles I: A multivariate study of the morphological variation in two species of Onthophagus (Scarabaeidae: Onthophagini). Australian Journal of Zoology 35: 123–32CrossRefGoogle Scholar
Daly, H.V. 1992. A statistical and empirical evaluation of some morphometric variables of honey bee classification. pp. 127–53 in Sorensen, J.T., Foottit, R.G. (Eds.), Ordination in the study of morphology, evolution and systematics of insects. Applications and quantitative genetic rationals. Amsterdam: Elsevier Science PublishersGoogle Scholar
Dodson, P. 1978. On the use of ratios in growth studies. Systematic Zoology 27(1): 6267CrossRefGoogle Scholar
Foottit, R.G., Sorensen, J.T. 1992. Ordination methods: their contrast to clustering and cladistic techniques. pp. 110in Sorensen, J.T., Foottit, R.G. (Eds.), Ordination in the study of morphology, evolution and systematics of insects. Applications and quantitative genetic rationals. Amsterdam: Elsevier Science PublishersGoogle Scholar
Hills, M. 1978. On ratios — A response to Atchley, Gaskins, and Anderson. Systematic Zoology 27(1): 6162CrossRefGoogle Scholar
Kawano, K. 1995. Habitat shift and phenotypic character displacement in sympatry of two closely related rhinoceros beetle species (Coleoptera: Scarabaeidae). Annals of the Entomological Society of America 88(5): 644–52CrossRefGoogle Scholar
Leamy, L., Sustarsic, S. 1978. A morphometric discriminant analysis of agouti genotypes in C57BL/6 house mice. Systematic Zoology 27: 4960CrossRefGoogle Scholar
López-Colón, J.I. 1992. Revisión de algunos tipos de especies endémicas de la Península Ibérica del género Ceramida Baraud, 1987 (Coleoptera: Scarabaeidae: Melolon-thinae: Pachydemini). Giornale italiano di Entomologia 6: 229–33Google Scholar
Rice, W.R. 1989. Analyzing tables of statistical tests. Evolution 43: 223–25CrossRefGoogle ScholarPubMed
Sanmartín, I. 1998. Evolución de los Pachydeminae Paleárticos. Doctoral thesis, Universal Complutense de MadridGoogle Scholar
Sanmartín, I., Martín-Piera, F. 1997. Nuevos datos corológicos, fenológicos y morfológicos de Ceramida cobosi Báguena, 1955 (Coleoptera, Melolonthidae). Zoologica Baetica 8: 231–33Google Scholar
ARM, Serrano. 1985. Contribution à l'étude du genre Elaphocera Gené, 1836 en Algarve (sud de Portugal). Description de deux espèces nouvelles (Coleoptera, Melolonthidae). Nouvelle Revue de Entomologie (N.S. ) 2(4): 359–70Google Scholar
Serrano, A., Alvarado, M., Durán, J.M., De la Rosa, A. 1996. Contribución al conocimiento de Ceramida (Elaphocera) spp. (Coleóptera: Scarabaeidae) plaga de los olivares de la provincia de Sevilla. Boletín de Sanidad Vegetal Plagas 22: 203–11Google Scholar
Sorensen, J.T., Foottit, R.G. 1992. The evolutionary quantitative genetic rationales for the use of ordination analyses in systematics: phylogenetic implications. pp. 2953in Sorensen, J.T., Foottit, R.G. (Eds.), Ordination in the study of morphology, evolution and systematics of insects. Applications and quantitative genetic rationals. Amsterdam: Elsevier Science PublishersGoogle Scholar
Statsoft Inc. 1996. STATISTICA for Windows 5.1: Computer program manual. Tulsa, Okla.: Statsoft Inc.Google Scholar
Tatsuoka, M.M. 1971. Multivariate analysis: techniques for educational and psychological research. New York: Wiley and SonsGoogle Scholar
Tizado, E.J., Nieto-Nafría, J.M. 1994. A new species of Uroleucon (Hom. Aphididae) on Andryala spp.: a multivariate analysis. The Canadian Entomologist 126: 1251–61CrossRefGoogle Scholar
Willig, M.R., Owen, R.D., Colbert, R.L. 1986. Assessment of morphometric variation in natural populations: the inadequacy of the univariate approach. Systematic Zoology 35(2): 195203CrossRefGoogle Scholar