Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-18T02:26:31.696Z Has data issue: false hasContentIssue false

The Mode of Action of Repellent Chemicals Against Blood-sucking Flies

Published online by Cambridge University Press:  31 May 2012

B. Hocking
Affiliation:
Department of Entomology, University of Alberta, Edmonton
A. A. Khan
Affiliation:
Department of Entomology, University of Alberta, Edmonton

Abstract

Recent conflicting theories regarding host finding by blood-sucking flies and the mode of action of repellents are examined and discussed. The claim that repellents owe their activity to infra-red absorption in a narrow waveband (449–467 cm.−1) was examined by measurement of published curves for infra-red absorption by repellent, non-repellent, and doubtful chemicals. Peaks of absorption at this waveband in comparison with adjacent Wave numbers are three times as common in repellent as in non-repellent materials, but in comparison with absorption over the entire spectrum studied all groups of materials show a trough of absorption at this narrow waveband. No supporting evidence could be found for the claim that mosquito repellents masquerade as water vapour by virtue of their infra-red absorption spectra, nor for the suggestion arising out of this, that such repellents should be attractive at low humidities. Repellency of indalone was found to increase as humidity decreased.

Regardless of the role molecular vibration may play in olfactory perception, the usefulness of infra-red radiation to blood-sucking flies seeking their hosts and to man seeking repellents for the flies remains to be demonstrated.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beck, L. H. 1950. Osmics: olfaction. In Glasser, O. (ed.), Medical physics. Vol. II, pp. 658664. The Year Book Publishers, Chicago.Google Scholar
Beck, L. H., and, Miles, W. R., 1947. Some theoretical and experimental relationships between infra-red absorption and olfaction. Science 106: 511.Google Scholar
Bourlière, F. 1956. The natural history of mammals. Knopf, New York. xxi + 364 pp.Google Scholar
Brown, A. W. A. 1951. Factors in the attractiveness of bodies for mosquitoes. Nature, Lond. 167: 202.CrossRefGoogle ScholarPubMed
Brown, A. W. A. 1952. Factors in the attractiveness of bodies for mosquitoes. Trans. IX int. Congr. Ent., Amsterdam (1951) 1: 895900.Google Scholar
Brown, A. W. A. 1954. Studies on the responses of the female Aedes mosquito. VI. The attractiveness of coloured cloths to Canadian species. Bull. ent. Res. 45: 6778.CrossRefGoogle Scholar
Brown, A. W. A., and Carmichael, A. G.. 1961a. Lysine as a mosquito attractant. Nature, Lond. 189: 508509.CrossRefGoogle Scholar
Brown, A. W. A., and Carmichael, A. G.. 1961b. Lysine and alanine as mosquito attractants. J. econ. Ent. 54: 317324.CrossRefGoogle Scholar
Buddenbrock, W. von. 1958. The senses. Univ. Michigan Press, Ann Arbor. 167 pp.Google Scholar
Burgess, L. 1959. Probing behaviour of Aedes aegypti (L.) in response to heat and moisture. Nature, Lond. 184: 19681969.CrossRefGoogle Scholar
Callahan, P. S. 1965. Intermediate and far infra-red sensing of nocturnal insects. Ann. ent. Soc. Amer. 58: 727756.Google Scholar
SirChristophers, S. R. 1960. Aedes aegypti (L.) the yellow fever mosquito. The University Press, Chicago. 739 pp.Google Scholar
Clark, W. E. Le Gros. 1957. The Ferrier lecture. Inquiries into the anatomical basis of olfactory discrimination. Proc. roy. Soc. 146: 299319.Google Scholar
Davies, D. M. 1951. Some observations of the number of black flies (Diptera, Simuliidae) landing on colored cloths. Canad. J. Zool. 29: 6570.CrossRefGoogle Scholar
Daykin, P. N., Kellogg, F. E. and Wright, R. H.. 1965. Host-finding and repulsion of Aedes aegypti. Canad. Ent. 97: 239263.CrossRefGoogle Scholar
DeLong, D. M. 1954. Fundamental studies on behaviour of larval and adult mosquitoes and evaluation of mosquito repellents. Ohio Engin. exp. Sta. News 26(1): 5155.Google Scholar
Dethier, V. G., Browne, L. B. and Smith, C. N.. 1960. The designation of chemicals in terms of the responses they elicit from insects. J. econ. Ent. 53: 134136.CrossRefGoogle Scholar
Evans, W. G. 1965. The orientation of Melanophila DeG. (Buprestidae, Coleoptera) to fires. Proc. XII int. Congr. Ent., London, (1964), 286.Google Scholar
Fallis, A. M., and Smith, S. M.. 1964. Ether extracts from birds and CO2 as attractants for some ornithophilic Simuliids. Canad. J. Zool. 42: 723730.CrossRefGoogle Scholar
Flügge, C. 1934. Geruchliche Raumorientierung von Drosophila melanogaster. Z. vergl. Physiol. 20: 463500.Google Scholar
Forrester, A. T., and Perkins, W. E.. 1951. A test of the infra-red absorption theory of olfaction. Science 114: 56.CrossRefGoogle Scholar
Geiger, R. 1959. The climate near the ground. Harvard Univ. Press, Cambridge. 494 pp.Google Scholar
Gillett, J. D., Haddow, A. J. and Corbet, P. S.. 1962. The sugar feeding cycle in a cage population of mosquitoes. Entomologia exp. appl. 5: 223232.Google Scholar
Gjullin, C. M. 1947. Effect of clothing color on the rate of attack of Aedes mosquitoes. J. econ. Ent. 40: 326327.CrossRefGoogle ScholarPubMed
Haddow, A. J., Gillett, J. D. and Highton, R. B.. 1947. The mosquitoes of Bwamba County, Uganda. Bull. ent. Res. 37: 301330.CrossRefGoogle ScholarPubMed
Heran, H., and Lindauer, M.. 1963. Windkompensation and Seitenwindkorrektur der Bienen beim Flug über Wasser. Z. vergl. Physiol. 47: 3955.CrossRefGoogle Scholar
Hocking, B. 1963. The use of attractants and repellents in vector control. Bull. World Hlth Org. 29: Suppl. 121126.Google ScholarPubMed
Hocking, B. 1964. Aspects of insect vision. Canad. Ent. 96: 320334.Google Scholar
Hocking, B., and Hocking, J. M.. 1962. Entomological aspects of African onchocerciasis and observations on Simulium in the Sudan. Bull. World Hlth Org. 27: 465472.Google Scholar
Hocking, B., and Mitchell, B. L.. 1961. Owl Vision. Ibis 103a: 284288.Google Scholar
Hocking, B., and Pickering, L. R.. 1954. Observations on the bionomics of some northern species of Simuliidae (Diptera). Canad. J. Zool. 32: 99119.CrossRefGoogle Scholar
Hocking, B., Richards, W. R. and Twinn, C. R.. 1950. Observations on the bionomics of some northern mosquito species (Culicidae: Diptera). Canad. J. Res. D, 28: 5880.CrossRefGoogle Scholar
Hosoi, T. 1959. Identification of blood components which induce gorging of the mosquito. J. ins. Physiol. 3: 191218.CrossRefGoogle Scholar
Howlett, F. M. 1910. The influence of temperature upon the biting of mosquitoes. Parasitology 2: 479484.CrossRefGoogle Scholar
Huffaker, C. B., and Back, R. C.. 1943. A study of methods of sampling mosquito populations. J. econ. Ent. 36: 561569.Google Scholar
Kalmus, H. 1942. Anemotaxis in Drosophila. Nature, Lond. 150: 405.CrossRefGoogle Scholar
Kalmus, H., and Hocking, B.. 1960. Behaviour of Aedes mosquitoes in relation to blood-feeding and repellents. Entomologia exp. appl. 3: 126.CrossRefGoogle Scholar
Kellogg, F. E., and Wright, R. H.. 1962a. The guidance of flying insects. V. Mosquito attraction. Canad. Ent. 94: 10091016.CrossRefGoogle Scholar
Kellogg, F. E., and Wright, R. H.. 1962b. Studies in mosquito repellency. IV. The effect of repellent chemicals. Canad. Ent. 94: 10161021.CrossRefGoogle Scholar
Kellogg, F. E., Frizel, D. E. and Wright, R. H.. 1962. The olfactory guidance of flying insects. IV. Drosophila. Canad. Ent. 94: 884888.CrossRefGoogle Scholar
Khan, A. A. 1965. Effects of repellents on mosquito behaviour. Quaest. ent. 1: 135.Google Scholar
Khan, A. A., Maibach, H. I., Strauss, W. G. and Fenley, W. R.. 1965. Screening humans for degree of attractiveness to mosquitoes. J. econ. Ent. 58: 694697.Google Scholar
Laarman, J. J. 1955. The host-seeking behaviour of the malaria mosquito Anopheles maculipennis atroparvus. Acta leidensia 25: 1144.Google ScholarPubMed
Lipsitz, E. Y., and Brown, A. W. A.. 1964. Studies on the responses of the female Aedes mosquito. IX. The mode of attractiveness of lysine and other amino-acids. Bull. ent. Res. 54: 675687.Google Scholar
Marchand, W. 1920. Thermotropism in insects. Ent. News 31: 159165.Google Scholar
Mer, G., Birnbaum, D. and Aioub, A.. 1947. The attraction of mosquitoes by human beings. Parasitology 38: 19.CrossRefGoogle ScholarPubMed
Miles, W. R., and Beck, L. H.. 1947. Infra-red absorption in field studies of olfaction in bees. Science 106: 512.Google Scholar
Miles, W. R., and Beck, L. H.. 1949. Infra-red absorption in field studies of olfaction in honeybees. Proc. nat. Acad. Sci. 35: 292310.Google Scholar
*Portchinsky, L. 1915. Tabanidae, and the simplest methods of destroying them. Mem. Bur. Ent. 614 Edn. Petrograd. 2(8): 58. Abstr. in Rev. appl. Ent. B, 3: 195.Google Scholar
Prosser, C. L., and Brown, F. A. Jr., 1961. Comparative animal physiology. Saunders, London. 688 pp.Google Scholar
Rahm, U. 1957. Zur Bedeutung des Duftes und des Schweisses bei der Attraktion von Aedes aegypti durch den Menschen. Acta. trop. 14(3): 208217.Google Scholar
Rahm, U. 1958. Die attraktive Wirkung der vom Menschen abgegebenen Duftstoffe auf Aedes aegypti L. Z. Tropenmed. u. Parasit. 9: 146156.Google ScholarPubMed
Ramsay, W. 1882. On smell. Nature, Lond. 26: 187189.CrossRefGoogle Scholar
Rayner, H. B., and Wright, R. H.. 1966. Far infra-red spectra of mosquito repellents. Canad. Ent. 98: 7680.Google Scholar
Reeves, W. C. 1951. Field studies on carbon dioxide as a possible host stimulant to mosquitoes. Proc. Soc. exp. Biol., N.Y. 77: 6466.Google Scholar
Reeves, W. C. 1953. Quantitative field studies on a carbon dioxide chemotropism of mosquitoes. Amer. J. trop. Med. Hyg. 2: 325331.Google Scholar
Roessler, P. 1963. The attractiveness of steroids and amino acids to female Aedes aegypti. Proc. 50th annu. Meet. N.J. Mosq. Exterm. Assoc. pp. 250255.Google Scholar
Roessler, P., and Brown, A. W. A.. 1964. Studies on the responses of the female Aedes mosquito. X. Comparison of oestrogens and amino acids as attractants. Bull. ent. Res. 55: 395403.CrossRefGoogle Scholar
Roth, L. M., and Willis, E. R.. 1952. Possible hygroreceptors in Aedes aegypti (L.) and Blattella germanica (L.). J. Morph. 91: 114.Google Scholar
Rudolfs, W. 1922. Chemotropism of mosquitoes. N.J. agric. Exp. Sta. Bull. 367: 123.Google Scholar
Sato, S., Kato, M. and Toriumi, M.. 1957. Structural changes in the compound eye of Culex pipiens var. pallens Coquillet in the process to dark adaptation. Sci. Rep. Tohoku Univ., 4th Ser. Biology 23: 91100.Google Scholar
Schwinck, I. 1954. Experimentelle Untersuchungen uber Geruchssinn und Strömungs-wahrnehmung in der Orientierung bei Nachtschmetterlingen. Z. vergl. Physiol. 37: 1956.Google Scholar
Schwinck, I. 1958. A study of the olfactory stimuli in the orientation of moths. Proc. X int. Congr. Ent., Montreal (1956) 2: 577582.Google Scholar
Seaton, D. R., and Lumsden, W. H. R.. 1941. Observations on the effect of age, fertilization and light on biting by Aedes aegypti in a controlled microclimate. Ann. trop. Med. Parasit. 35: 2336.Google Scholar
Slifer, E. H., and Sekhon, S. S.. 1962. The fine structure of the sense organs on the antennae flagellum of the yellow-fever mosquito Aedes aegypti (Linnaeus). J. Morph. 111: 4967.CrossRefGoogle Scholar
Smith, C. N., Gilbert, I. H. and Gouck, H. K.. 1962. Factors in the attraction of mosquitoes to hosts, and their relation to protection with repellents. Proc. XI int. Congr. Ent., Vienna (1960) Symposium V. 3: 82.Google Scholar
Steward, C. C., and Atwood, C. E.. 1963. The sensory organs of the mosquito antenna. Canad. J. Zool. 41: 577594.CrossRefGoogle Scholar
Stone, A. 1930. Bionomics of Tabanidae. Ann. ent. Soc. Amer. 23: 261304.CrossRefGoogle Scholar
Strauss, W. G., Maibach, H. J., Khan, A. A. and Pearson, T. R.. 1965. Observations on biting behaviour of Aedes aegypti L. Mosquito News 25: 272275.Google Scholar
Sutton, O. G. 1949. The application to micrometeorology of the theory of turbulent flow over rough surfaces. Quart. J. R. met. Soc. 75: 335350.CrossRefGoogle Scholar
Thomson, R. C. M. 1938. The reactions of mosquitoes to temperature and humidity. Bull. ent. Res. 29: 125140.CrossRefGoogle Scholar
Trapido, H. 1962. Studies of host-seeking behaviour of Anopheles albimanus. Proc. XI int. Congr. Ent., Vienna (1960) Symposium V. 3: 62.Google Scholar
Trembley, H. L. 1952. The distribution of certain liquids in the esophageal diverticula and stomach of mosquitoes. Amer. J. trop. Med. Hyg. 1: 693710.CrossRefGoogle ScholarPubMed
Van Thiel, P. H., and Laarman, J. J.. 1953. What are the reactions by which the female Anopheles finds its blood supplier? Docum. Med. geogr. trop. 6: 156161.Google Scholar
Wright, R. H. 1954a. Odour and chemical constitution. Nature, Lond. 173: 831.Google Scholar
Wright, R. H. 1954b. Odour and molecular vibration. I. Quantum and thermodynamic considerations. J. appl. Chem. 4: 611615.CrossRefGoogle Scholar
Wright, R. H. 1956. Physical basis of insect repellency. Nature, Lond. 178: 638.CrossRefGoogle ScholarPubMed
Wright, R. H. 1957. A theory of olfaction and of the action of mosquito repellents. Canad. Ent. 89: 518528.CrossRefGoogle Scholar
Wright, R. H. 1958. The olfactory guidance of flying insects. Canad. Ent. 90: 8189.CrossRefGoogle Scholar
Wright, R. H. 1962. Studies in mosquito attraction and repulsion. V. Physical theory. Canad. Ent. 94: 10221029.Google Scholar
Wright, R. H. 1964. The science of smell. xii + 164 pp. George Allen and Unwin Ltd., London.Google Scholar
Wright, R. H., and Kellogg, F. E.. 1962a. Response of Aedes aegypti to moist convection currents. Nature, Lond. 194: 402403.CrossRefGoogle ScholarPubMed
Wright, R. H., and Kellogg, F. E.. 1962b. Mosquito attraction and repulsion. Nature, Lond. 195: 404406.CrossRefGoogle Scholar
Wright, R. H., and Serenius, R. S. E.. 1954. Odour and molecular vibration. II. Raman spectra of substances with the nitrobenzene odour. J. appl. Chem. 4: 615621.CrossRefGoogle Scholar
Wright, R. H., Daykin, P. N. and Kellogg, F. E.. 1965. Reaction of flying mosquitoes to various stimuli. Proc. Xll int. Congr. Ent., London (1964), 281282.Google Scholar
Wright, R. H., Reid, C. and Evans, H. G. V.. 1956. Odour and molecular vibration. III. A new theory of olfactory stimulation. Chem. & Ind. pp. 973977.Google Scholar