Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T12:18:12.106Z Has data issue: false hasContentIssue false

LIFE HISTORIES, DIET, AND NICHE OVERLAP OF THREE SYMPATRIC SPECIES OF ELMIDAE (COLEOPTERA) IN A TEMPERATE STREAM

Published online by Cambridge University Press:  31 May 2012

Annette F. Tavares
Affiliation:
Division of Life Sciences, Scarborough Campus, University of Toronto, 1265 Military Trail, Scarborough, Ontario, Canada M1C 1A4
D. Dudley Williams
Affiliation:
Division of Life Sciences, Scarborough Campus, University of Toronto, 1265 Military Trail, Scarborough, Ontario, Canada M1C 1A4

Abstract

Promoresia elegans (LeConte), Optioservus fastiditus (LeConte), and Stenelmis nr. bicarinata LeConte coexist in Duffin Creek, Ont., making up 3.78–23.92% of the riffle fauna present.

Promoresia elegans and O. fastiditus appeared to have semi-voltine life histories. Stenelmis nr. bicarinata appeared to be univoltine but with overlapping generations and slow recruitment occurring from late summer to fall; growth was slow in winter but fast in spring and summer.

Based on the index of relative importance (Pinkas et al. 1971), detritus was identified as the most important food source for all size classes and all species throughout the year. Microinorganics ranked second, with diatoms, fungal hyphae, and vascular plant material being the least important food sources. There was no indication of ontogenic food switching in any of the species.

The Schoener (1970) niche overlap index indicated almost complete dietary overlap (Cxy = 0.78–0.97) among the three species throughout the year and the Hurlbert (1978) niche overlap index similarly indicated a convergence of diets (L = 1.31–3.54).

Niche breadth values were found to be high for all species on the rock surfaces (generalist diet) but were lower in the hyporheic zone indicating a higher degree of specialization there.

Résumé

Promoresia elegans (LeConte), Optioservus fastiditus (LeConte) et Stenelmis nr. bicarinata LeConte coexistent à Duffin Creek, Ont., constituant 3,78 à 23,92% de la faune présente au zone d’ondulation.

Promoresia elegans et O. fastiditus ont paru d’avoir les métamorphoses semivoltines. Stenelmis nr. bicarnata a paru d’être d’une métamorphose univoltine, mais ayant des générations chevauchantes et un recrutement lent à partir de tard en été jusqu’à l’automne; la croissance a été lente en hiver, mais rapide au printemps et à l’été.

Seion l’index d’importance relative (Pinkas et al. 1971), le détritus a été identifié comme la source la plus importante d’alimentation dans le cas des insectes de toutes grandeurs et de toutes espèces, l’année durant. Les micro-inorganiques ont été en deuxième place, pendant que les diatomées, les hyphes fongueux, et du matériel vasculaire des plantes ont été parmi les sources les moins importantes d’alimentation. Aucune indication de modification d’alimentation ontogénique n’a été observée de la part de n’importe quelle espèce.

L’index de chevauchement des niches de Schoener (1970) a démontré un chevauchement presque complet d’alimentation (Cxy = 0,78–0,97) parmi les trois espèces pendant l’année et l’index de chevauchement des niches de Hurlbert (1978) a aussi démontré une convergence d’alimentation (L = 1,31–3,54).

Les valeurs pour la largeur des niches ont été élevées en ce qui concerne toutes espèces aux surfaces du rocher (alimentation généraliste), mais plus bases au zone hyporhéique, indiquant un degré de spécialisation plus haut aux surfaces du rocher.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berlyn, G.P., and Miksche, J.P.. 1976. Botanical Microtechnique and Cytochemistry. The Iowa State University Press, Ames. 326 pp.Google Scholar
Brown, H.P. 1987. Biology of riffle beetles. A. Rev. Ent. 32: 253273.CrossRefGoogle Scholar
Chapman, R.F. 1975. The Insects — Structure and Function. The English Universities Press Ltd., London. 819 pp.Google Scholar
Cummins, K.W., and Lauff, G.H.. 1969. The influence of substrate particle size on the microdistribution of stream macrobenthos. Hydrobiologia 34: 145181.CrossRefGoogle Scholar
Cummins, K.W., and Merrit, R.W.. 1984. Ecology and distribution of aquatic insects. pp. 5965in Merrit, R.W., and Cummins, K.W. (Eds.), An Introduction to the Aquatic Insects of North America. Kendall/Hunt, Dubuque.Google Scholar
Griffiths, R.A. 1986. Feeding niche overlap and food selection in smooth and palmate newts, Triturus vulgaris and T. helveticus, at a pond in mid-Wales. J. Anim. Ecol. 55: 201214.CrossRefGoogle Scholar
Hurlbert, S:H. 1978. The measurement of niche overlap and some relatives. Ecology 59: 6777.CrossRefGoogle Scholar
Hynes, H.B.N. 1970. The Ecology of Running Waters. Liverpool University Press, Liverpool. 555 pp.Google Scholar
Jackson, D.J. 1952. Observations on the capacity for flight of water beetles. Proc. R. ent. Soc. Lond. (A) 27: 5770.Google Scholar
Koslucher, D.G., and Minshall, G.W.. 1973. Food habits of some benthic invertebrates in a northern cool-desert stream (Deep Creek, Curlew Valley, Idaho-Utah). Trans. Am. Micros. Soc. 92: 441452.CrossRefGoogle Scholar
Lenz, J. 1977. On detritus as a food source for pelagic filter-feeders. Mar. Biol. 41: 3948.CrossRefGoogle Scholar
LeSage, L., and Harper, P.P.. 1976. Cycles biologiques d'elmidae (Coleopteres) do Ruisseaux des Laurentides, Quebec. Annls. Limnol. 12: 139174.CrossRefGoogle Scholar
Minshall, G.W. 1984. Aquatic insect-substratum relationships. pp. 358400in Resh, V.H., and Rosenberg, D.M. (Eds.), The Ecology of Aquatic Insects. Praeger Publishers, New York.Google Scholar
Mundie, J.H. 1971. Sampling benthos and substrate materials, down to 50 μm in size, in shallow streams. J. Fish. Res. Board Can. 28: 849860.CrossRefGoogle Scholar
Neihof, R., and Loeb, G.. 1974. Dissolved organic matter in seawater and the electric charge of immersed surfaces. J. Mar. Res. 32: 512.Google Scholar
Petraitis, P.S. 1979. Likelihood measures of niche breadth and overlap. Ecology 60: 703710.CrossRefGoogle Scholar
Pimm, S.L. 1982. Food Webs. Chapman and Hall, New York. 219 pp.CrossRefGoogle Scholar
Pinkas, L., Oliphant, M.S., and Iverson, I.L.K.. 1971. Food habits of albacore, bluefin tuna and bonito in California waters. Calif. Fish Game Fish. Bull. 152: 1105.Google Scholar
Pyke, G.H., Clemens, H.P., and Charnov, E.L.. 1977. Optimal foraging: a selective review of theory and tests. Quart. Rev. Biol. 52: 137154.CrossRefGoogle Scholar
Sanderson, M.W. 1938. A monographic revision of the North American species of Stenelmis (Dryopoidea: Coleoptera). Univ. Kansas Sci. Bull. 25(22): 635717.Google Scholar
Schoener, T.W. 1970. Non-synchronous spatial overlap of lizards in patchy habitats. Ecology 51: 408418.CrossRefGoogle Scholar
Seagle, H.H. 1980. Flight periodicity and emergence patterns in the Elmidae (Coleoptera: Dryopoidea). Ann. ent. Soc. Am. 73: 300306.CrossRefGoogle Scholar
Seagle, H.H. 1982. Comparison of the food habits of three species of riffles beetles, Stenelmis crenata, Stenelmis mera and Optioservus trivittatus (Coleoptera: Dryopoidea: Elmidae). Freshwat. Invertebr. Biol. 1: 3338.CrossRefGoogle Scholar
Wallace, R.K. 1981. An assessment of diet-overlap indexes. Trans. Am. Fish. Soc. 110: 7276.2.0.CO;2>CrossRefGoogle Scholar
White, D.S. 1978. Life cycle of the riffle beetle, Stenelmis sexlineata (Elmidae). Ann. ent. Soc. Am. 71: 121125.CrossRefGoogle Scholar
White, D.S., Brigham, W.U., and Doyen, J.T.. 1984. Aquatic Coleoptera. pp. 361–347 in Merrit, R.W., and Cummins, K.W. (Eds.), An Introduction to the Aquatic Insects of North America. Kendall/Hunt, Dubuque.Google Scholar
Williams, D.D. 1980. Some relationships between benthos and substrate heterogeneity. Limnol. Oceanogr. 25(1): 166172.CrossRefGoogle Scholar
Williams, D.D., and Hynes, H.B.N.. 1974. The occurrence of benthos deep in the substratum of a stream. Freshwat. Biol. 4: 233256.CrossRefGoogle Scholar