Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T05:13:09.983Z Has data issue: false hasContentIssue false

LABORATORY STUDIES ON THE PERSISTENCE AND BEHAVIOUR IN SOIL OF FOUR PYRETHROID INSECTICIDES

Published online by Cambridge University Press:  31 May 2012

C. R. Harris
Affiliation:
Research Centre, Agriculture Canada, London, Ontario N6A 5B7
R. A. Chapman
Affiliation:
Research Centre, Agriculture Canada, London, Ontario N6A 5B7
Carol Harris
Affiliation:
Research Centre, Agriculture Canada, London, Ontario N6A 5B7

Abstract

In direct contact toxicity tests with four pyrethroid and three standard insecticides, using 24–48 h old crickets, Acheta pennsylvanicus (Burmeister), as test insects, carbofuran was most toxic > cypermethrin > fensulfothion > chlorpyrifos > fenvalerate > fenpropanate > permethrin. In moist (5% water) Plainfield sand, using the same test insect, chlorpyrifos was most toxic > carbofuran > fenpropanate > cypermethrin > permethrin > fenvalerate > fensulfothion, i.e. the pyrethroids, although quite strongly adsorbed by soil, were still moderately active as soil insecticides. All pyrethroids were less toxic in muck soil as compared with Plainfield sand, and in air-dry (0.5% water) as compared with moist (5% water) Plainfield sand, with the effects being less on cypermethrin and fenvalerate and greater on permethrin and fenpropanate. None of the pyrethroids was affected by soil type and moisture to the same extent as was carbofuran. Permethrin, fenvalerate, and cypermethrin showed a negative temperature coefficient of toxicity in moist Plainfield sand, being from 1.4 to 1.9× more toxic at 15° than at 32°C. Fenpropanate, like carbofuran, was slightly more toxic at 32° than at 15°C. Generally, soil type, moisture, and temperature had minimal effects on the toxicity of the four pyrethroid insecticides. In persistence studies over 48 weeks, using Plainfield sand, the pyrethroids were more persistent than chlorpyrifos, but less persistent than dieldrin. Under these laboratory conditions, permethrin and fenvalerate were slightly more persistent, while fenpropanate and cypermethrin were as persistent as carbofuran. Trans-isomers of permethrin and cypermethrin declined more quickly in the sand than did the cis-isomers and of the trans-isomers the 1S,trans declined much faster than the 1R,trans while little difference was observed for the corresponding 1S- and 1R,cis-isomers.

Résumé

Dans des essais de toxicité par contact direct de 4 pyréthrinoïdes et 3 insecticides courants sur des grillons (Acheta pennsylvanicus (Burmeister)) âgés de 24–48 heures comme cobayes, le carbofuran s’est révélé le plus toxique, suivi dans l’ordre par la cyperméthrine, le fensulfothion, le chlorpyrifos, le fenvalérate, le fenpropanate et la perméthrine. Dans un sable Plainfield humide (5% d’eau) et avec le même insecte d’essai, c’est le chlorpyrifos qui est le plus toxique, suivi par le carbofuran, le fenpropanate, la cyperméthrine, la perméthrine, le fenvalérate et le fensulfothion, ce qui montre que même si elles sont très fortement absorbées par le sol, les pyréthrinoïdes demeurent relativement actives comme insecticides du sol. Toutes les pyréthrinoïdes sont moins toxiques en terre organique qu’en sable Plainfield, et en sable sec (0,5% d’eau) qu’humide (5% d’eau), ces effets se faisant sentir moins sur la cyperméthrine et le fenvalérate et davantage sur la perméthrine et le fenpropanate. Aucune des pyréthrinoïdes n’a été aussi fortement altérée par le type de sol et sa teneur en eau que le carbofuran. La perméthrine, le fenvalérate et la cyperméthrine affichent un coefficient de toxicité négatif en fonction de la température dans un sable Plainfield humide, étant de 1,4 à 1,9 fois plus toxiques à 15 qu’à 32°C. Le fenpropanate, comme le carbofuran, s’avère un peu plus toxique à 32 qu’à 15°C. En général, le type de sol, sa teneur en eau et sa température ont des effets négligeables sur la toxicité des quatre pyréthrinoïdes. Des études de rémanence au moyen du sable Plainfield révèlent qu’au bout de 48 semaines, les pyréthrinoïdes sont plus rémanentes que le chlorpyrifos, mais moins que la dieldrine. Dans ces conditions de laboratoire, la perméthrine et le fenvalérate sont légèrement plus rémanents, alors que le fenpropanate et la cyperméthrine persistent autant que le carbofuran. Les isomères-trans de la perméthrine et de la cyperméthrine disparaissent plus rapidement dans le sable que les isomères-cis, et parmi les isomères-trans, les formes 1S régressent plus rapidement que les 1R, contrairement aux formes correspondantes des isomères-cis.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abernathy, C. O., Ueda, K., Engel, J. L., Gaughan, L. C., and Casida, J. E.. 1973. Substrate-specificity and toxicological significance of pyrethroid-hydrolyzing esterases of mouse liver microsomes. Pest. Biochem. Physiol. 3: 300311.CrossRefGoogle Scholar
Bélanger, A. and Hamilton, H. A.. 1979. Determination of disulfoton and permethrin residues in an organic soil and their translocation into lettuce, onion, and carrot. J. environ. Sci. Hlth B14: 213226.Google Scholar
Burt, P. E., Elliott, M., Farnham, A. W., Janes, N. F., Needham, P. H., and Pulman, D. A.. 1974. The pyrethrins and related compounds. XIX. Geometrical and optical isomers of 2, 2-dimethyl-3-(2,2-dichlorovinyl)-cyclopropanecarboxylic acid and insecticidal esters with 5-benzyl-3-furylmethyl and 3-phenoxybenzyl alcohols. Pestic. Sci. 5: 791799.CrossRefGoogle Scholar
Chapman, R. A. and Simmons, H. S.. 1977. Gas-liquid chromatography of picogram quantities of pyrethroid insecticides. J. ass. off. analyt. Chem. 60: 977978.Google Scholar
Chapman, R. A. and Harris, Carol R.. 1979. Determination of (R)- and (S)-epimers at C-1 in residual amounts of (±)-cis, trans-permethrin and cypermethrin by gas-liquid chromatography. J. Chromatog. 174: 369377.CrossRefGoogle Scholar
Cohen, I. C., Norcup, J., Ruzicka, J. H. A., and Wheals, B. B.. 1970. An electron-capture gas chromatographic method for the determination of some carbamate insecticides as 2,4-dinitrophenol derivatives of their phenol moieties. J. Chromatog. 49: 215221.CrossRefGoogle Scholar
Elliott, M. 1977. Synthetic pyrethroids. pp. 1–29 in Gould, R. F. (Ed.), Synthetic Pyrethroids. ACS Symposium Ser. 42. 229 pp.Google Scholar
Elliott, M., Janes, N. F., and Potter, C.. 1978. The future of pyrethroids in insect control. A. Rev. Ent. 23: 443469.CrossRefGoogle Scholar
Finney, D. J. 1952. Probit Analysis. A Statistical Treatment of the Sigmoid Response Curve. Cambridge Univ. Press, Cambridge, England. 318 pp.Google Scholar
Griffiths, D. C. 1977. The effectiveness of pyrethroid seed treatments against soil pests of cereals. Pestic. Sci. 8: 258263.CrossRefGoogle Scholar
Harris, C. R. 1969. Laboratory studies on the persistence of biological activity of some insecticides in soils. J. econ. Ent. 62: 14371441.CrossRefGoogle ScholarPubMed
Harris, C. R. 1970. Laboratory evaluation of candidate materials as potential soil insecticides. III. J. econ. Ent. 63: 782787.CrossRefGoogle Scholar
Harris, C. R. and Kinoshita, G. B.. 1977. Influence of posttreatment temperature on the toxicity of pyrethroid insecticides. J. econ. Ent. 70: 215218.CrossRefGoogle Scholar
Harris, C. R. and Mazurek, J. H.. 1964. Comparison of the toxicity to insects of certain insecticides applied by contact and in the soil. J. econ. Ent. 57: 698702.CrossRefGoogle Scholar
Harris, C. R. and Mazurek, J. H.. 1966. Laboratory evaluation of candidate materials as potential soil insecticides. J. econ. Ent. 59: 12151221.CrossRefGoogle Scholar
Harris, C. R. and Svec, H. J.. 1964. Mass rearing of the common field cricket, Gryllus pennsylvanicus (Burmeister) (Orthoptera: Gryllidae) for use as a test insect in toxicological studies. Bull. ent. Res. 54: 805809.CrossRefGoogle Scholar
Harris, C. R. and Turnbull, S. A.. 1978. Laboratory studies on the contact toxicity and activity in soil of four pyrethroid insecticides. Can. Ent. 110: 285288.CrossRefGoogle Scholar
Harris, C. R., Svec, H. J., and Chapman, R. A.. 1978. Potential of pyrethroid insecticides for cutworm control. J. econ. Ent. 71: 692696.CrossRefGoogle Scholar
Kaneko, H., Ohkawa, H., and Miyamoto, J.. 1978. Degradation and movement of permethrin isomers in soil. J. Pesticide Sci. 3: 4351.CrossRefGoogle Scholar
Kaufman, D. D., Haynes, S. C., Jordan, E. G., and Kayser, A. J.. 1977. Permethrin degradation in soil and microbial cultures. pp. 147–161 in Gould, R. F. (Ed.), Synthetic Pyrethroids. ACS Symposium Ser. 42. 229 pp.Google Scholar
Roberts, T. R. and Standen, M. E.. 1977 a. Degradation of the pyrethroid cypermethrin NRDC 149 (±)-α-cyano-3-phenoxybenzyl (±)-cis, trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate and the respective cis-(NRDC 160) and trans-(NRDC 159) isomers in soils. Pestic. Sci. 8: 305319.CrossRefGoogle Scholar
Roberts, T. R. and Standen, M. E.. 1977 b. Degradation of the pyrethroid insecticide WL 41706, (±) α-cyano-3-phenoxybenzyl 2,2,3,3,-tetramethylcyclopropanecarboxylate, in soils. Pestic. Sci. 8: 600610.CrossRefGoogle Scholar
Schaefer, C. H., Dupras, E. F. Jr.,, and Mulligan, F. S.. 1978. Residues of Pydrin in pasture water, soil and vegetation following multiple aerial applications. Proc. Conf. Calif. Mosquito Vector Control Ass. 46: 112114.Google Scholar
Soderlund, D. M. and Casida, J. E.. 1977. Substrate specificity of mouse-liver microsomal enzymes in pyrethroid metabolism. pp. 162–172 in Gould, R. F. (Ed.), Synthetic Pyrethroids. ACS Symposium Ser. 42. 229 pp.Google Scholar
Vea, E. V., Yu, C. C., Webb, D. R., Eckenrode, C. J., and Kuhr, R. J.. 1976. Laboratory and field evaluation of insecticides and insect growth regulators for control of the seedcorn maggot. J. econ. Ent. 69: 178180.CrossRefGoogle Scholar
Williams, I. H. and Brown, M. J.. 1979. Persistence of permethrin and WL 43775 in soil. J. agric. fd. Chem. 27: 130132.CrossRefGoogle Scholar