Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T06:15:38.995Z Has data issue: false hasContentIssue false

INTERACTION BETWEEN SITKA SPRUCE WEEVIL AND ITS HOST, PICEA SITCHENSIS (BONG) CARR.: A NEW MECHANISM FOR RESISTANCE

Published online by Cambridge University Press:  31 May 2012

T.S. Sahota
Affiliation:
Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
J.F. Manville
Affiliation:
Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
E. White
Affiliation:
Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5

Abstract

Available information on the interaction between Sitka spruce weevil, Pissodes strobi (Peck), and its host Sitka spruce, Picea sitchensis (Bong) Carr., is examined. Based on a theoretical consideration of this information, a new mechanism is proposed to explain the resistance exhibited by some of the genetically distinct individuals of some provenances of this species. Experimental evidence is presented to show that resistant trees can sufficiently affect P. strobi reproduction and progeny development and survival to reduce this pest’s ability to kill the leaders of these trees when challenged with weevils containing already mature eggs. Our mechanism also provides an explanation as to how weevils are able to avoid attacking and reproducing on resistant trees in which their progeny would fail.

Résumé

Les informations disponibles sur l’interaction entre le charançon Pissodes strobi (Peck) et son hôte, l’Épinette de Sitka, Picea sitchensis (Bong) Carr., ont été étudiées. Des considérations théoriques sur ces informations ont donné lieu à une hypothèse sur le mécanisme capable d’expliquer la résistance qui prévaut chez certains arbres génétiquement distincts, d’origines particulières. Des preuves expérimentales permettent de démontrer que des arbres résistants peuvent affecter suffisamment la reproduction de P. strobi, de même que le développement et la survie des rejetons, pour réduire la capacité des parasites de tuer les plus forts de ces arbres lorsque ceux-ci sont envahis par des charançons contenant déjà des oeufs à maturité. Le mécanisme invoqué peut également expliquer comment les charançons peuvent éviter de se reproduire dans des arbres résistants où leur progéniture ne réussirait pas à survivre.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfaro, R.I., and Borden, J.H.. 1982. Host selection by the white pine weevil, Pissodes strobi Peck: Feeding bioassays using host and non-host plants. Canadian Journal of Forest Research 12: 6470.CrossRefGoogle Scholar
Alfaro, R.I., and Borden, J.H.. 1985. Factors determining the feeding of the white pine weevil (Coleoptera: Curculionidae) on its coastal British Columbia host, Sitka spruce. Proceedings of the Entomological Society of Ontario (Supplement) 116: 6366.Google Scholar
Alfaro, R.I.,, and Ying, C.C.. 1990. Levels of Sitka spruce weevil, Pissodes strobi (Peck), damage among Sitka spruce provenances and families near Sayward, British Columbia. The Canadian Entomologist 122: 607615.Google Scholar
Bell, W.J., 1969. Dual role of juvenile hormone in the control of yolk formation in Periplaneta americana. Journal of Insect Physiology 15: 12791290.Google Scholar
Bell, W.J., and Barth, R.H.. 1971. Initiation of yolk deposition by juvenile hormone. Nature, New Biology 230: 220221.CrossRefGoogle Scholar
Berryman, A.A., 1972. Resistance of conifers to invasion by bark beetle-fungus associations. BioScience 22: 598602.CrossRefGoogle Scholar
Boer, P.J.den. 1968. Spreading the risk and stabilization of animal numbers. Acta Biotheoretica 18: 165194.Google Scholar
Bownes, M. 1986. Expression of the genes coding for vitellogenin (yolk protein). Annual Review of Entomology 31: 507531.Google Scholar
Brooks, J.E., and Borden, J.H.. 1992. Development of a Resistance Index for Sitka Spruce against the White Pine Weevil, Pissodes strobi Peck. FRDA Report 180: 18 pp. Forestry Canada, Victoria.Google Scholar
Coats, S.A., Mutchmor, J.A., and Tollefson, J.J.. 1987. Regulation of migratory flight by juvenile-hormone mimic and inhibitor in the western corn-root worm (Coleoptera: Chrysomelidae). Annals of the Entomological Society of America 80: 697808.Google Scholar
Dethier, V.G., 1987. Concluding remarks. pp. 429–435 in Labeyrie, V., Fabres, G., and Lachaise, D. (Eds.), Insects–Plants. W. Junk, Boston, MA.459 pp.Google Scholar
Dixon, W.N., and Houseweart, M.W.. 1983. Spring temporal and spatial activity patterns of adult white pine weevils (Coleoptera: Curculionidae) in Maine. Environmental Entomology 12: 4349.Google Scholar
Engelmann, F. 1970. The Physiology of Insect Reproduction. Pergamon Press, New York, NY.307 pp.Google Scholar
Harman, D.M., 1975. Movements of individually marked white pine weevils, Pissodes strobi. Environmental Entomology 4: 120124.Google Scholar
Harman, D.M., and Kulman, H.M.. 1967. Flight and dispersal of white pine weevil. Journal of Economic Entomology 60: 16821687.CrossRefGoogle Scholar
Harman, D.M., and Kulman, H.M.. 1969. Dispersion of released white pine weevils in intrastand growth types. Annals of the Entomological Society of America 62: 835838.Google Scholar
Isman, M.B., 1992. A physiological perspective. pp. 156–176 in Roitberg, B.D., and Isman, M.B. (Eds.), Insect Chemical Ecology. Chapman and Hall, New York, NY.359 pp.Google Scholar
Kiss, G.K., and Yanchuk, A.D.. 1991. Preliminary evaluation of genetic variation of weevil resistance in interior spruce in British Columbia. Canadian Journal of Forest Research 21: 230234.Google Scholar
Lees, A.D., 1984. The endocrine control of polymorphism in aphids. pp. 369–367 in Downer, R.G.H., and Laufer, H. (Eds.), Endocrinology of Insects. Alan R. Liss, New York, NY.707 pp.Google Scholar
Lunderstadt, J. 1988. Resistance of plants at the population level to attack by phytophagous insects. pp. 131–137 in Mattson, W.J., Levieux, J., and Bernard-Dagan, C. (Eds.), Mechanisms of Woody Plant Defenses Against Insects, Search For Pattern. Springer-Verlag, New York, NY.416 pp.Google Scholar
Mattson, W.J., Lawrence, P.K.Haack, R.A., Herms, D.A., and Charles, P.J.. 1988. Defensive strategies of woody plants against different insect-feeding guilds in relation to plant ecological strategies and intimacy of association with insects. pp. 3–38 in Mattson, W.J., Levieux, J., and Bernard-Dagan, C. (Eds.), Mechanisms of Woody Plant Defenses Against Insects, Search For Pattern. Springer-Verlag, New York, NY.416 pp.Google Scholar
Owens, J.N., and Molder, M.. 1976. Bud development in Sitka spruce. II. Cone differentiation and early development. Canadian Journal of Botany 54: 766779.Google Scholar
Overhulser, D.L., and Gara, R.I.. 1975. Spring flight and adult activity of the white pine weevil, Pissodes strobi (Coleoptera: Curculionidae), on Sitka spruce in Western Washington. The Canadian Entomologist 107: 251256.CrossRefGoogle Scholar
Penner, M.P., 1984. Endocrine aspects of phase polymorphism in locusts. pp. 379–394 in Downer, R.G.H., and Laufer, H. (Eds.), Endocrinology of Insects. Alan R. Liss, New York, NY.707 pp.Google Scholar
Raabe, M. 1989. pp. 35–55 in Recent Developments in Insect Neurohormones. Plenum Press, New York, NY.503 pp.Google Scholar
Retnakaran, A. 1974. Induction of sexual maturity in the white pine weevil, Pissodes strobi (Coleoptera: Curculionidae) by some analogues of juvenile hormone. The Canadian Entomologist 106: 831834.Google Scholar
Sahota, T.S., 1971. Failure of ovarian development in the Douglas-fir beetle, Dendroctonus pseudotsugae; an analysis of gut proteases and female-specific proteins. Canadian Journal of Zoology 49: 10211024.Google Scholar
Sahota, T.S. 1973. Yolk deposition in Douglas-fir beetle oocytes: Possible role of RNA synthesis in the follicular epithelium. Journal of Insect Physiology 19: 10871095.Google Scholar
Sahota, T.S., Chapman, J.A., and Nijholt, W.W.. 1970. Ovary development in a Scolytid beetle Dendroctonus pseudotsugae (Coleoptera: Scolytidae): Effect of farnesyl methyl ether. The Canadian Entomologist 102: 14241428.Google Scholar
Sahota, T.S., Peet, F.G., Ibaraki, A., and Farris, S.H.. 1986. Chromatin distribution pattern and cell functioning. Canadian Journal of Zoology 63: 19081913.Google Scholar
Sams, G.R., and Bell, W.J.. 1975. Juvenile hormone initiation of yolk deposition in vitro in the ovary of the cockroach, Periplaneta americana. pp. 404–413 in Adiyodi, K.G., and Adiyodi, R.G. (Eds.), Advances in Invertebrate Reproduction. Vol. I. Peralam Kenoth, Karivellur, Kerala, India. 514 pp.Google Scholar
Shorey, H.H., 1974. Environmental and physiological control of insect sex pheromone behaviour. pp. 62–80 in Birch, M.C. (Ed.), Pheromones. North-Holland, Amsterdam. 495 pp.Google Scholar
Stroh, R.C., and Gerhold, H.D.. 1965. Eastern white pine characteristics related to weevil feeding. Silvae Genetica 14: 160169.Google Scholar
VanderSar, T.J.D., and Borden, J.H.. 1977. Visual orientation of Pissodes strobi Peck (Coleoptera: Curculionidae) in relation to host selection behaviour. Canadian Journal of Zoology 55: 20422049.Google Scholar
Wallace, D.R., and Sullivan, C.R.. 1985. The white pine weevil, Pissodes strobi (Coleoptera: Curculionidae): A review emphasizing behaviour and development in relation to physical factors. Proceedings of the Entomological Society of Ontario (Supplement) 16: 3962.Google Scholar
Wigglesworth, V.B., 1972. The Principles of Insect Physiology. Methuen & Co. Ltd., London. 827 pp.Google Scholar
Ying, C.C., 1991. Genetic resistance to the white pine weevil in Sitka spruce. British Columbia Ministry of Forests, Research Note 106: 117.Google Scholar