Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T21:20:31.339Z Has data issue: false hasContentIssue false

The Humidity Reactions of Melanoplus bivittatus (Say) (Orthoptera, Acrididae): Antennal Sensilla and Hygro-reception1

Published online by Cambridge University Press:  31 May 2012

P. Wm. Riegert
Affiliation:
Entomology Section, Canada Department of Agriculture Research Station Saskatoon, Sask.

Extract

Hygro-receptive sensilla have been found on the antennae of fruit flies (1), spider beetles (2), cockroaches (3), wireworms (5), ticks (6), mealworm beetles (8), flour beetles (11), and body lice (16). Two types of antennal sensilla, the basiconic and the coeloconic, have been identified as hygro-receptors of the grasshoppers, Melanoplus differentialis (Thos.) and M. mexicanus mexicanus (Sauss.) (12, 13). This paper describes the antennal sensilla of Melanoplus bivittatus (Say) and discusses their function.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1960

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Begg, M., and Hogben, L.. 1946. Chemoreceptivity of Drosophila melanogaster. Proc. R. Soc. Lond., B. 133: 119.Google ScholarPubMed
2.Bentley, E. W. 1944. The biology and behaviour of Ptinus tectus Boie (Coleoptera, Ptinidae), a pest of stored products. V. Humidity reactions. Jour. Exp. Biol. 20: 152158.Google Scholar
3.Gunn, D. L., and Cosway, C. A.. 1938. The temperature and humidity relations of the cockroach. Humidity preference. Jour. Exp. Biol. 15: 555563.CrossRefGoogle Scholar
4.Jannone, G. 1940. Studio morfologico, anatomico e istologico del Dociostaurus maroccanus (Thunb.) nelle sue fasi transiens congregans, gregaria e solitaria. Boll. R. Lab. di Ent. Agr. Portici 4: 1443.Google Scholar
5.Lees, A. D. 1943. On the behaviour of wireworms of the genus Agriotes Esch. (Coleoptera, Elateridae). I. Reactions to humidity. Jour. Exp. Biol. 20: 4353.CrossRefGoogle Scholar
6.Lees, A. D. 1948. The sensory physiology of the sheep tick, Ixodes ricinus L. Jour. Exp. Biol. 25: 145207.Google Scholar
7.Newman, S. B., Borysko, E., and Swerdlow, M.. 1949. New sectioning techniques for light and electron microscopy. Science 110: 6668.Google Scholar
8.Pielou, D. P. 1940. The humidity behaviour of the mealworm beetle, Tenebrio molitor L. II. The humidity receptors Jour. Exp. Biol. 17: 295306.Google Scholar
9.Riegert, P. Wm. 1958. Humidity reactions of Melanoplus bivittatus (Say) and Camnula pellucida (Scudd.) (Orthoptera, Acrididae): Reactions of starved and of moulting grasshoppers. Can. Entomol. 90: 680684.CrossRefGoogle Scholar
10.Riegert, P. Wm. 1959. Humidity reactions of Melanoplus bivittatus (Say) and Camnula pellucida (Scudd.) (Orthoptera, Acrididae): Reactions of normal grasshoppers. Can. Entomol. 91: 3540.Google Scholar
11.Roth, L. M., and Willis, E. R.. 1951. Hygroreceptors in adults of Tribolium (Coleoptera, Tenebrionidae). Jour. Exp. Zool. 116: 527570.CrossRefGoogle ScholarPubMed
12.Slifer, E. H. 1954. The permeability of the sensory pegs on the antennae of the grasshopper (Orthoptera, Acrididae). Biol. Bull. 106: 122128.Google Scholar
13.Slifer, E. H. 1955. Detection of odors and water vapor by grasshoppers (Orthoptera, Acrididae) and some new evidence concerning the sense organs which may be involved. Jour. Exp. Zool. 130: 301317.CrossRefGoogle Scholar
14.Slifer, E. H., Prestage, J. J., and Beams, H. W.. 1957. The fine structure of the long basiconic sensory pegs of the grasshopper (Orthoptera, Acrididae) with special reference to those on the antenna. Jour. Morph. 101: 359397.Google Scholar
15.Snodgrass, R. E. 1935. Principles of Insect Morphology. McGraw Hill Book Co., New York.Google Scholar
16.Wigglesworth, V. B. 1941. The sensory physiology of the human louse Pediculus humanus corporis DeGeer (Anoplura). Parasitology 33: 67109.Google Scholar