Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T21:21:15.840Z Has data issue: false hasContentIssue false

Gene characterization of two digestive serine proteases in Sitodiplosis mosellana: implications for alternative control strategies

Published online by Cambridge University Press:  02 April 2012

Lourdes D. Arrueta
Affiliation:
Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, United States of America
Richard H. Shukle
Affiliation:
United States Department of Agriculture, Agricultural Research Service, Purdue University, West Lafayette, IN 47907, United States of America
Ian L. Wise
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, Manitoba, Canada R3T 2M9
Omprakash Mittapalli*
Affiliation:
Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, United States of America
*
1 Corresponding author (e-mail: [email protected]; [email protected]).

Abstract

Two full-length cDNA sequences encoding digestive serine proteases (designated as SmPROT-1 and SmPROT-2) were recovered from the midgut of the orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), in an ongoing expressed sequence tag project. The deduced amino acid sequences shared homology with digestive serine proteases from insect and non-insect species, including conserved regions such as the catalytic triad, active pocket, and conserved structural motifs. Secretory signal peptides in both proteases at the N-terminals indicate that these proteins could function as midgut digestive serine proteases. A phylogenetic analysis grouped SmPROT-1 and SmPROT-2 with trypsin-like and chymotrysin-like serine proteases, respectively. Quantitative real-time PCR analysis showed that SmPROT-1 and SmPROT-2 were expressed predominantly in the midgut rather than in other tissues (fat body and salivary glands). Expression analyses revealed high mRNA levels for the feeding instars (1st- and 2nd-instar larvae) compared with other stages (neonate, 3rd instar, pupa, and adult). These results provide new insights into the biology of S. mosellana and are discussed in the context of developing alternative control strategies.

Résumé

Nous avons récupéré deux séquences complètes d'ADN complémentaire qui codent pour les sérines protéases digestives (désignées SmPROT-1 et SmPROT-2) dans le tube digestif moyen de la cécidomyie orangée du blé, Sitodiplosis mosellana (Géhin) (Dipera: Cecidomyiidae), dans le cadre d'une étude en cours sur les marqueurs de séquences exprimées. Les séquences d'acides aminés déduites partagent des homologies avec les sérines protéases digestives d'espèces d'insectes et de non insectes, incluant les régions conservées, telles que la triade catalytique, la poche d'interaction et les motifs structuraux conservés. Des peptides de signal de sécrétion dans les deux protéases aux terminaux N indiquent que ces protéines pourraient servir de sérines protéases digestives dans le tube digestif moyen. Une analyse phylogénétique regroupe SmPROT-1 et SmPROT-2 respectivement avec les sérines protéases de type trypsine et chymotrysine. Une analyse d'amplification en chaîne par polymérase (PCR) quantitative en temps réel montre que SmPROT-1 et SmPROT-2 sont exprimées plus dans le tube digestif moyen par comparaison aux autres tissus (corps gras et glandes salivaires). Des analyses d'expression génique montrent des concentrations élevées d'ARNm chez les stades qui s’alimentent (larves de 1er et 2e stades) par rapport aux autres stades (néonates, larves de 3e stade, nymphes et adultes). Nos résultats ouvrent de nouvelles perspectives sur la biologie de S. mosellana; nous en discutons dans le contexte de la mise au point de stratégies de contrôle de rechange.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al Jabr, A., and Abo-El-Saad, M. 2008. A putative serine protease from larval midgut of red palm weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae): partial purification and biochemical characterization. American Journal of Environmental Sciences, 4: 595601. doi:10.3844/ajessp.2008.595.601.Google Scholar
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. Journal of Molecular Biology, 215: 403410. PMID:2231712.CrossRefGoogle ScholarPubMed
Barnes, H.F. 1956. Gall midges of economic importance. In Gall midges of cereal crops. Crosby Lockwood and Son Ltd., London, United Kingdom. pp. 5781.Google Scholar
Barrett, A.J., and Rawlings, N.D. 1995. Families and clans of serine peptidases. Archives of Bio-chemistry and Biophysics, 318: 247250. PMID: 7733651 doi:10.1006/abbi.1995.1227.CrossRefGoogle ScholarPubMed
Bentur, J.S., Srinivasan, T.E., and Kalode, M.B. 1987. Occurrence of a virulent rice gall midge (GM) Orseolia oryzae Wood-Mason biotype in Andhra Pradesh, India. International Rice Research Newsletter, 12: 3334.Google Scholar
Berzonsky, W.A., Ding, H., Haley, S.D., Harris, M.O., Lamb, R.J., McKenzie, R.H., et al. 2003. Breeding wheat for resistance to insects. Plant Breeding Reviews, 22: 221296.Google Scholar
Blouse, G.E., Botkjaer, K.A, Deryugina, E., Byszuk, A.A., Jensen, J.M., Mortensen, K.K., et al. 2009. A novel mode of intervention with serine protease activity targeting zymogen activation. Journal of Biological Chemistry, 284: 46474657. PMID:19047064 doi:10.1074/jbc.M804922200.CrossRefGoogle ScholarPubMed
Bown, D.P., Wilkinson, H.S., and Gatehouse, J.A. 1997. Differentially regulated inhibitor-sensitive and insensitive protease genes from the phyto-phagous insect pest, Helicoverpa armigera, are members of complex multigene family. Insect Biochemistry and Molecular Biology, 27: 625638. PMID:9404008 doi:10.1016/S0965-1748(97) 00043-X.CrossRefGoogle Scholar
Cheeseman, M.T., and Gooding, R.H. 1985. Proteolytic enzymes from tsetse flies Glossina morsitans and Glossina palpalis (Diptera: Glossinidae). Insect Biochemistry, 15: 677680. doi:10.1016/0020-1790(85)90094-0.CrossRefGoogle Scholar
Cheng, W.N., Li, X.L., Yu, F., Li, Y.P., Li, J.J., and Wu, J.X. 2009. Proteomic analysis of prediapause, diapauses and post diapauses larvae of the wheat blossom midge, Sitodiplosis mosellana (Diptera: Cecidomyiidae). European Journal of Entomology, 106: 2935.CrossRefGoogle Scholar
Choo, Y.M., Lee, K.S., Yoon, H.J., Lee, S.B., Kim, J.H., Sohn, H.D., and Jin, B.R. 2007. A serine protease from the midgut of the bumble-bee, Bombus ignites (Hymenoptera: Apidae): c DNA cloning, gene structure, expression and enzyme activity. European Journal of Entomology, 104: 17.CrossRefGoogle Scholar
De Leo, F., Bonade Bottino, M., Ceci, L., Gallerani, R., and Jouanin, L. 1998. Opposite effects on Spodoptera littoralis larvae of high expression level of a trypsin proteinase inhibitor in transgenic plants. Plant Physiology, 118: 9971004. PMID:9808744 doi:10.1104/pp.118.3.997.CrossRefGoogle Scholar
Di Cera, E. 2009. Serine proteases. International Union of Biochemistry and Molecular Biology Life, 61: 510515. PMID:19180666 doi:10.1002/iub.186.CrossRefGoogle ScholarPubMed
Ding, H., Lamb, R.J., and Ames, N. 2000. Inducible production of phenolic acids in wheat and antibiotic resistance to Sitodiplosis mosellana. Journal of Chemical Ecology, 26: 969985. doi:10.1023/A:1005412309735.CrossRefGoogle Scholar
Dunaevsky, Y.E., Elpidina, E.N., Vinokurov, K.S., and Belozersky, M.A. 2005. Protease inhibitors in improvement of plant resistance to pathogens and insects. Molecular Biology, 39(4): 608613. doi:10.1007/s11008-005-0076-y. [Translated from Molekulyarnaya Biologiya, 39: 702–708.]CrossRefGoogle Scholar
El Bouhssini, M., Hatchett, J.H., and Wilde, G.E. 1998. Survival of Hessian fly (Diptera: Cecodomyiidae) larvae on wheat cultivars carrying different genes for antibiosis. Journal of Agricultural Entomology, 15: 183193.Google Scholar
Fox, S.L., McKenzie, R.I.H., Lamb, R.J., Wise, I.L., Smith, M.A.H., Humphreys, D.G., et al. 2010. Unity hard red spring wheat. Canadian Journal of Plant Science, 90: 7178. doi:10.4141/CJPS09024.CrossRefGoogle Scholar
Garrett, R.H., and Grisham, C.M. 2009. Biochemisty. 4th ed. Brooks Cole, Florence, Kentucky.Google Scholar
Hedstrom, L. 2002. Serine protease mechanism and specificity. Chemical Reviews, 102: 45014523. PMID:12475199 doi:10.1021/cr000033x.CrossRefGoogle ScholarPubMed
Knodel, J., and Ganehierachchi, M. 2008. Integrated pest management of the wheat midge in North Dakota [online]. Available from http://www.ag.ndsu.edu/pubs/plantsci/pests/e1330.htm [accessed 1 August 2010].Google Scholar
Krem, M.M., and Di Cera, E. 2001. Molecular markers of serine protease evolution. European Molecular Biology Organization Journal, 20: 30363045.CrossRefGoogle ScholarPubMed
Lamb, R.J., Wise, I.L., Olfert, O.O., Gavloski, J., and Barker, P.S. 1999. Distribution and seasonal abundance of Sitodiplosis mosellana (Diptera: Cecidomyiidae) in spring wheat. The Canadian Entomologist, 131: 387397. doi:10.4039/Ent131387-3.CrossRefGoogle Scholar
Marshall, S.D.G., Gatehouse, L.N., Becher, S.A., Christeller, J.T., Gatehouse, H.S., Hurst, M.R.H., et al. 2008. Serine proteases identified from a Costelytra zealandica (White) Coleoptera: Scarabaeidae) midgut EST library and their expression through insect development. Insect Molecular Biology, 17: 247259. PMID:18477240 doi:10.1111/j.1365-2583.2008.00798.x.CrossRefGoogle ScholarPubMed
McKenzie, R.I.H., Lamb, R.J., Aung, T., Wise, I.L., Barker, P., and Olfert, O.O. 2002. Inheritance of resistance to wheat midge, Sitodiplosis mosellana, in spring wheat. Plant Breeding, 121: 383388. doi:10.1046/j.1439-0523.2002.745267.x.CrossRefGoogle Scholar
Mittapalli, O., Stuart, J.J., and Shukle, R.H. 2005. Molecular cloning and characterization of two digestive serine proteases from the Hessian fly, Mayetiola destructor. Insect Molecular Biology, 14: 309318. PMID:15926900 doi:10.1111/j.1365-2583.2005.00561.x.CrossRefGoogle ScholarPubMed
Mittapalli, O., Wise, I.L., and Shukle, R.H. 2006. Characterization of a serine carboxypeptidase in the salivary glands and fat body of the orange wheat blossom midge, Sitodiplosis mosellana (Diptera: Cecidomyiidae). Insect Biochemistry and Molecular Biology, 36: 154160. PMID: 16431282 doi:10.1016/j.ibmb.2005.11.004.CrossRefGoogle ScholarPubMed
Olfert, O.O., Mukerji, M.K., and Doane, J.F. 1985. Relationship between infestation levels and yield loss caused by wheat midge, Sitodiplosis mosellana (Diptera: Cecidomyiidae), in spring wheat in Saskatchewan. The Canadian Entomologist, 117: 593598. doi:10.4039/Ent117593-5.CrossRefGoogle Scholar
Pfaffl, M.W. 2001. A new mathematical model for relative quantification in real time RT-PCR. Nucleic Acids Research, 29: 20022007. doi:10. 1093/nar/29.9.e45.CrossRefGoogle ScholarPubMed
Ramalho-Ortigão, J.M., Kamhawi, S., Rowton, E.D., Ribeiro, J.M.C., and Valenzuela, J.G. 2003. Cloning and characterization of trypsin- and chymotrypsin-like proteases from the midgut of the sand fly vector Phlebotomus papatasi. Insect Biochemistry and Molecular Biology, 33: 163171. PMID:12535675 doi:10.1016/S0965-1748 (02)00187-X.CrossRefGoogle ScholarPubMed
Reehar, M.M. 1945. The wheat midge in the Pacific Northwest. United States Department of Agriculture Circular No. 732. pp. 18.Google Scholar
SAS Institute Inc. 2008. STAT. User's guide. Version 9.1. SAS Institute Inc., Cary, North Carolina.Google Scholar
Shanower, T.G. 2005. Occurrence of Sitodiplosis mosellana (Diptera: Cecidomyiidae) and its parasitoid, Macroglenes penetrans (Hymenoptera: Platygasteridae), in northeastern Montana. The Canadian Entomologist, 137: 753755. doi:10.4039/N05-056.CrossRefGoogle Scholar
Smith, M.A.H., Wise, I.L., and Lamb, R.J. 2007. Survival of Sitodiplosis mosellana (Diptera: Cecidomyiidae) on wheat (Poaceae) with antibiosis resistance: implications for the evolution of virulence. The Canadian Entomologist, 139: 133140. doi:10.4039/N06-027.CrossRefGoogle Scholar
Swofford, D.L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods) Version 4. Sinauer Associates Sunderland, Massachusetts.Google Scholar
Terra, W.R., and Ferreira, C. 1994. Insect digestive enzymes: properties, compartmentalization and function. Comparative Biochemistry and Physiology, 109: 162. doi:10.1016/0305-0491(94)90141-4.Google Scholar
Terra, W.R., Ferreira, C., Jordao, B.P., and Dillon, R.J. 1996. Digestive enzymes. In Biology of the insect midgut. Edited by Lehane, M.J. and Billingsley, P.F.. Chapman and Hall, London, United Kingdom. pp. 153194.CrossRefGoogle Scholar
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The clustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 24: 48754882.Google Scholar
Wise, I.L., and Lamb, R.J. 2004. Diapause and emergence of Sitodiplosis mosellana (Diptera: Cecidomyiidae) and its parasitoid Macroglenes penetrans (Hymenoptera: Pteromalidae). The Canadian Entomologist, 136: 7790. doi:10.4039/N03-032.CrossRefGoogle Scholar
Wise, I.L., Lamb, R.J., and Smith, M.A.H. 2001. Domestication of wheats (Gramineae) and their susceptibility to herbivory by Sitodiplosis mosellana (Diptera: Cecidomyiidae). The Canadian Entomologist, 133: 255267. doi:10.4039/Ent133255-2.CrossRefGoogle Scholar
Yousef, G.M., Elliott, M.B., Kopolovic, A.D., Serry, E., and Diamandis, E.P. 2004. Sequence and evolutionary analysis of the human trypsin subfamily of serine peptidases. Biochimica et Biophysica Acta: Proteins and Proteomics, 1698: 7786. doi:10.1016/j.bbapap.2003.10.008.CrossRefGoogle ScholarPubMed
Yuan, J.S., Reed, A., Chen, F., and Stewart, C.N. 2006. Statistical analysis of real-time PCR data. BMC Bioinformatics, 7: 8597. PMID:16504059 doi:10.1186/1471-2105-7-85.CrossRefGoogle Scholar
Zhu-Salzman, K.Koiwa, H., Salzman, R.A., Shade, R.E., and Ahn, J.E. 2003. Cowpea bruchid Callosobruchus maculatus uses a three-component strategy to overcome a plant defensive cysteine protease inhibitor. Insect Molecular Biology, 12: 135145. PMID:12653935 doi:10.1046/j.1365-2583.2003.00395.x.CrossRefGoogle ScholarPubMed