Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T21:05:05.671Z Has data issue: false hasContentIssue false

FORUM: HOW MANY HIDDEN SPECIES ARE THERE? AN APPLICATION OF THE PHYLOGENETIC SPECIES CONCEPT TO GENETIC DATA FOR SOME COMPARATIVELY WELL KNOWN BEE “SPECIES”

Published online by Cambridge University Press:  31 May 2012

Laurence Packer
Affiliation:
Department of Biology, York University, 4700 Keele St., North York, Ontario, Canada M3J 1P3
John S. Taylor
Affiliation:
Department of Biological Sciences, Simon Fraser University, Barnaby, British Columbia, Canada V5A 1S6

Abstract

Estimates of global species richness for insects are based upon extrapolations from “known” to unknown faunas and hence rely upon accurate counts of species for the referrent taxon or region. The number of reference species depends upon the species concepts employed by workers in that group combined with the degree to which nonstandard (i.e. nonmorphological) approaches have been used. Genetic data are more directly applicable to the detection of the apparent absence of gene flow, which lies at the heart of any species concept, than is morphological information. But what criteria can be used as a practical guide to suggest the absence of gene flow and define species-level units? Minimally, the phylogenetic species concept requires that there be one fixed difference between two samples for them both to be considered discrete species. The assumptions accompanying this definition include the survey of sufficient geographic locations, loci, and individuals. Based upon six studies of mostly widespread, readily identifiable and well-investigated bee “species”, we estimate that the number of species currently recognised may underestimate the true figure by half (although for at least two of the studies localities have been undersampled and more collections are needed). Even when examples for which there are fewer than five fixed differences between samples are removed from the data set, the number of recognised species increases by perhaps as much as 50% (the same caveat regarding undersampling of populations still applies). We suggest that the presence of morphologically unrecognised species may be more common among widespread, easily identified “species” than is generally accepted. Whether or not similar levels of species underestimation apply to other faunas, such as tropical rainforest canopy beetles, remains to be investigated.

Résumé

L’estimation de la richesse globale en espèces chez les insectes repose sur des extrapolations de faunes «connues» à des faunes inconnues et suppose donc des dénombrements exacts d’espèces du taxon ou de la région étudiés. Le nombre d’espèces de référence dépend du concept d’espèce employé par les chercheurs spécialistes du groupe et de l’importance des approches non classiques (i.e. non morphologiques) utilisées. Les données génétiques sont plus directement utilisables dans la détection de l’absence apparente de flux génique, concept déterminant de toute espèce, que les données morphologiques. Mais quels critères peuvent constituer un guide pratique pour décréter l’absence de flux génique et pour définir les limites d’une espèce? D’un point de vue minimaliste, le concept phylogénétique d’espèce nécessite l’existence d’une seule différence stable entre deux échantillons pour décréter qu’il s’agit de deux espèces distinctes. Cette définition suppose l’inventaire d’un nombre suffisant de localités géographiques, de locus et d’individus. D’après six études sur des espèces d’abeilles, répandues pour la plupart, facilement identifiables et bien connues, nous calculons que le nombre d’espèces généralement reconnu peut sous-évaluer le nombre réel de 50% (quoique dans le cas d’au moins deux de ces études, les localités n’ont pas été suffisamment échantillonnées et des données supplémentaires devront être recueillies). Même quand les cas où il y a moins de cinq différences stables entre les échantillons sont enlevés des matrices de données, le nombre d’espèces reconnues peut augmenter parfois de 50% (la remarque précédente sur l’insuffisance de l’échantillonnage s’applique également ici). Il semble que la présence d’espèces morphologiquement impossibles à distinguer soit un phénomène plus courant chez les «espèces» bien répandues, facilement reconnaissables, qu’on ne l’avait cru à ce jour. Il reste à déterminer si ce phénomène de sous-estimation du nombre d’espèces s’applique à d’autres faunes, notamment celle des coléoptères des forêts tropicales ombrophiles.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avise, J.C. 1994. Molecular Markers, Natural History and Evolution. Chapman and Hall, London. 511 pp.CrossRefGoogle Scholar
Blanchetot, A., and Packer, L.. 1992. Genetic variability in the social bee Lasioglossum marginatum and a cryptic undescribed sibling species, as detected by DNA fingerprinting and allozyme electrophoresis. Insect Molecular Biology 1: 8997.CrossRefGoogle Scholar
Carman, G., and Packer, L.. 1997. A cryptic species allied to Halictus ligatus Say (Hymenoptera: Halictidae) detected by allozyme electrophoresis. Journal of the Kansas Entomological Society 69: 168176.Google Scholar
Crozier, R.H. 1975. Animal Cytogenetics. Vol. 3: Insecta 7, Hymenoptera. Gebruder Borntraeger, Berlin. 91 pp.Google Scholar
Daugherty, C.H., Cree, A., Hay, J.M., and Thompson, M.B.. 1990. Neglected taxonomy and continuing extinctions of tuatara (Sphenodon). Nature (London) 347: 177179.CrossRefGoogle Scholar
Davis, J.I., and Nixon, K.C.. 1992. Populations, genetic variation, and the delimitation of phylogenetic species. Systematic Biology 41: 421435.CrossRefGoogle Scholar
Erwin, T.L. 1982. Tropical forests: their richness in Coleoptera and other arthropod species. Coleoperists' Bulletin 36: 7475.Google Scholar
Erwin, T.L. 1991. How many species are there?: Revisited. Conservation Biology 5: 330333.CrossRefGoogle Scholar
Graur, D. 1985. Gene diversity in Hymenoptera. Evolution 39: 190199.CrossRefGoogle ScholarPubMed
Hammond, P.M. 1992. Species inventory. pp. 1739in Groombridge, B. (Ed.), Global Biodiversity: Status of the Earth's Living Resources. Chapman & Hall, London. 594 pp.CrossRefGoogle Scholar
Hodkinson, I.D., and Casson, D.. 1991. A lesser predilection for bugs: Hemiptera (Insecta) diversity in tropical rain forests. Biological Journal of the Linnean Society 43: 101109.CrossRefGoogle Scholar
May, R.M. 1990. How many species? Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences 330: 293304.Google Scholar
Moure, J.S., and Hurd, P.D.. 1987. An Annotated Catalog of the Halictid Bees of the Western Hemisphere (Hymenoptera, Apoidea). Smithsonian Institution Press, Washington, D.C.404 pp.Google Scholar
Nixon, K.C., and Wheeler, Q.D.. 1990. An amplification of the phylogenetic species concept. Cladistics 6: 211223.CrossRefGoogle Scholar
Packer, L., and Knerer, G.. 1987. The biology of a subtropical population of Halictus ligatus Say (Hymenoptera; Halictidae). III. The transition between annual and continuously brooded colony cycles. Journal of the Kansas Entomological Society 60: 510516.Google Scholar
Packer, L., and Owen, R.E.. 1989. Allozyme variation in Halictus rubicundus: a primitively social bee (Hymenoptera; Halictidae). The Canadian Entomologist 121: 10491058.CrossRefGoogle Scholar
Packer, L., and Owen, R.E.. 1994. Relatedness and sex ratio in a primitively eusocial halictine bee. Behavioral Ecology and Sociobiology 34: 110.CrossRefGoogle Scholar
Pesenko, Y.A. 1984. The Bees of the Genus Halictus Latreille sensu stricto (Hymenoptera, Halictidae) of Mongolia and Northwestern China, with a Review of Publications on the Halictini of this Region and with a Revision of the Subgenus Prohalictus of the World Fauna. USSR Academy of Sciences, Leningrad, pp. 446481. [In Russian.]Google Scholar
Plateaux-Quénu, C. 1959. Un nouveau type de société d'insecte: Halictus marginatus Brullé. Année Biologique 35: 235444.Google Scholar
Plateaux-Quénu, C. 1989. Premières observations sur le charactère social d'Evylaeus albipes (F.) (Hymenoptera, Halictinae). Actes Colloque Insectes Sociaux 5: 335344.Google Scholar
Plateaux-Quénu, C. 1993. Flexibilité sociale chez Evylaeus albipes (F.) (Hymenoptera, Halictinae). Actes Colloque Insectes Sociaux 8: 127134.Google Scholar
Plateaux-Quénu, C., Plateaux, L., and Packer, L.. (submitted). Differentiation between solitary and eusocial populations of Evylaeus albipes (F.) (Hymenoptera: Halictidae). I. Behaviour under experimentally reversed conditions.Google Scholar
Rosenmeier, L., and Packer, L.. 1993. A comparison of genetic variation in two sibling species pairs of haplodiploid insects. Biochemical Genetics 31: 185200.CrossRefGoogle ScholarPubMed
Sakagami, S.F., and Munakata, M.. 1972. Distribution and bionomics of a transpalaearctic eusocial halictine bee, Lasioglossum (Evylaeus) calceatum, in northern Japan, with reference to its solitary life cycle at high altitude. Journal of the Faculty of Science Hokkaido University, Series 6, Zoology 18: 411439.Google Scholar
Sakagami, S.F., and Toda, M.J.. 1986. Some arctic and subarctic solitary bees collected at Inuvik and Tuktoyaktuk, NWT, Canada (Hymenoptera:Apoidea). The Canadian Entomologist 118: 395405.CrossRefGoogle Scholar
Shoemaker, D.D., Costa, J.T. III, and Ross, K.G.. 1992. Estimates of heterozygosity in two social insects using a large number of electrophoretic markers. Heredity 69: 573582.CrossRefGoogle Scholar
Singh, R.S., and Rhomberg, L.R.. 1987. A comparative study of genic variation in natural populations of Drosophila melanogaster II. Estimates of heterozygosity and patterns of geographic differentiation. Genetics 117: 255271.CrossRefGoogle Scholar
Svensson, B.G., Ebmer, P.A.W., and Sakagami, S.F.. 1977. Lasioglossum (Evylaeus) boreale, a new Halictine (Hymenoptera: Apoidea) species found in northern Sweden and on Hokkaido, Japan, with notes on its biology. Entomologica Scandinavica 8: 219229.Google Scholar
Taylor, J.S. 1994. A Phylogenetic Approach to the Evolution of Social Behaviour, Nest Architecture and Biogeography of Evylaeus (Hymenoptera, Halictidae). M.Sc. thesis, York University, North York, Ont.91 pp.Google Scholar
Trivers, R.L., and Hare, H.. 1976. Haplodiploidy and the evolution of the social insects. Science (Washington, D.C.) 191: 249263.CrossRefGoogle Scholar
Wheeler, Q.D. 1990. Insect diversity and cladistic constraints. Annals of the Entomological Society of America 83: 10311047.CrossRefGoogle Scholar