Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T18:55:06.689Z Has data issue: false hasContentIssue false

FOOD-FINDING BY POLYPHAGOUS ARCTIID CATERPILLARS LACKING ANTENNAL AND MAXILLARY CHEMORECEPTORS

Published online by Cambridge University Press:  31 May 2012

V.G. Dethier
Affiliation:
Department of Zoology, University of Massachusetts, Amherst, Massachusetts, USA 01003

Abstract

Patterns of locomotion of arctiid caterpillars, Diacrisia virginica Fabr., deprived of all external chemosensory organs were recorded in a field where there was patchy distribution of two of the most favored food plants, Plantago major L. and Taraxacum officinale Walker, on a background of grass and mixed forbs. Each track traced in the field was retraced on a digitizing tablet from its point of origin in the center of a circle of 30 cm radius to the circumference. The length of the path was a measure of tortuosity. The patterns of paths followed by normal, antennectomized, maxillectomized, and antennectomized + maxillectomized larvae were compared. No differences in meander were found. The ability of larvae of each class to locate, discriminate among, and feed upon food plants was tested in field-plot tests and cafeteria tests. Different degrees of chemosensory deprivation did not affect ability to locate and begin feeding on plants but did impair ability to discriminate among species. Execution of normal patterns of meandering by chemosensorily deprived larvae and successful encounters with food plants support the hypothesis that food-related search behavior by this species of caterpillar is neither initiated nor steered by chemical stimuli provided by food plants.

Résumé

Les déplacements de chenilles de l’arctiidé Diacrisia virginica Fabr. dépourvues de tout organe chimiorécepteur externe ont été suivis dans un champ où les deux plantes préférées de l’insecte, Plantago major L. et Taraxacum officinale Walker, avaient des répartitions contagieuses parmi les herbacées, graminées et autres. Chaque parcours a été reproduit sur un système digital, depuis le point d’origine de la chenille au centre d’un cercle de 30 cm de rayon jusqu’à sa sortie du cercle. La longueur du parcours servait de mesure de sa sinuosité. Les parcours ont été comparés chez des insectes normaux, des insectes sans antennes, des insectes sans maxilles et des insectes sans antennes ni maxilles. La sinuosité s’est avérée la même chez tous les groupes. La capacité des larves de chaque groupe de repérer, de reconnaître et de consommer des plantes a été évaluée au moyen de tests dans des grilles-échantillons et au moyen de tests du type cafétéria. L’importance des handicaps chimiosensibles n’affectait pas la capacité de repérer et de consommer les plantes, mais entravait la capacité de distinguer les différentes espèces. Les parcours normaux des chenilles à sensibilité amoindrie et leur capacité de repérer les plantes à consommer appuient l’hypothèse selon laquelle les comportements de recherche de nourriture chez les chenilles de cette espèce ne sont ni déclenchés ni régis par les stimulus chimiques émis par les plantes.

[Traduit par là rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barth, R. 1937. Muskulatur und Bewegungsart der Raupen. Zoologische Jahrbucher, Anatomie 2 62: 507566.Google Scholar
Bell, W.J. 1990. Searching behavior patterns in insects. Annual Review of Entomology 35: 447467.CrossRefGoogle Scholar
Bernays, E.A., Blaney, W.M., Chapman, R.F., and Cook, A.G.. 1976. The ability of Locusta migratoria L. to perceive plant surface waxes. Symposia Biologica Hungarica 16: 3540.Google Scholar
Bernays, E.A., and Chapman, R.F.. 1970. The functions of the maxillary palps of Acrididae (Orthoptera). Entomologia Experimentalis et Applicata 13: 363376.Google Scholar
Blaney, W.M. 1975. Behavioural and electrophysiological studies of taste discrimination by the maxillary palps of larvae of Locusts migratoria (L.). Journal of Experimental Biology 62: 555569.CrossRefGoogle ScholarPubMed
deBoer, G., Dethier, V.G., and Schoonhoven, L.M.. 1977. Chemoreceptors in the preoral cavity of the tobacco hornworm, Manduca sexta, and their possible function in feeding behavior. Entomologia Experimentalis et Applicata 21: 287298.CrossRefGoogle Scholar
deBoer, G., and Hanson, F.E.. 1987. Differentiation of roles of chemosensory organs in food discrimination among host and non-host plants by larvae of the tobacco hornworm, Manduca sexta. Physiological Entomology 12: 387398.Google Scholar
deBoer, G., and Hanson, F.E.. 1988. The role of leaf lipids in food selection by larvae of the tobacco hornworm, Manduca sexta. Journal of Chemical Ecology 14: 669682.CrossRefGoogle Scholar
Dethier, V.G. 1937. Gustation and olfaction in lepidopterous larvae. Biological Bulletin 72: 723.CrossRefGoogle Scholar
Dethier, V.G. 1943. The dioptric apparatus of lateral ocelli. II. Visual capacities of the ocellus. Journal of Cellular and Comparative Physiology 22: 115126.CrossRefGoogle Scholar
Dethier, V.G. 1980. Food-aversion learning in two polyphagous caterpillars, Diacrisia virginica and Estigmene congrua. Physiological Entomology 5: 321325.CrossRefGoogle Scholar
Dethier, V.G. 1988. The feeding behavior of a polyphagous caterpillar (Diacrisia virginica) in its natural habitat. Canadian Journal Zoology 66: 12801288.CrossRefGoogle Scholar
Dethier, V.G. 1989. Patterns of locomotion of polyphagous arctiid caterpillars in relation to foraging. Ecological Entomology 14: 375386.CrossRefGoogle Scholar
Hanson, F.E., and Dethier, V.G.. 1973. Role of gustation and olfaction in food plant discrimination in the tobacco hornworm, Manduca sexta. Journal of Insect Physiology 19: 10191034.CrossRefGoogle ScholarPubMed
Holst, E. von. 1934. Motorische und tonische Erregung und ihr Bahnenverlauf bei Lepidopterenlarven. Zeitschrift für vergleichende Physiologie 21: 395414.CrossRefGoogle Scholar
Hughes, G.M., and Mill, P.J.. 1974. Locomotion: Terrestrial. pp. 335–379 in Rockstein, M. (Ed.), The Physiology of Insects, Vol. 3, 2nd ed. Academic Press, New York, NY. 629 pp.Google Scholar
Hundertmark, A. 1937. Das Formenunterscheidungsvermögen der Eiraupen der Nonne (Lymantria monacha L.). Zeitschrift für vergleichende Physiologie 24: 563582.CrossRefGoogle Scholar
Jermy, T., Hanson, F.E., and Dethier, V.G.. 1968. Induction of specific food preference in lepidopterous larvae. Entomologia Experimentalis et Applicata 11: 211230.CrossRefGoogle Scholar
Kalkowski, W. 1958. Investigations on territorial orientation during ontogenic development in Hyponomeuta evonymellus L., Lepidoptera, Hyponomeutidae. Part I. Nidal orientation in caterpillars. The nidal and topographical factors in orientation. Folia Biologica (Krakow) 6: 79102.Google Scholar
Kopec, S. 1919. Lokalizationversuche an zentralen Nervensystem der Raupen und Falter. Zoologische Jahrbucher, Abteilung 3 36: 453502.Google Scholar
Ma, W.C. 1972. Dynamics of feeding responses in Pieris brassicae Linn. as a function of chemosensory input: A behavioural, ultrastructural and electrophysiological study. Mededelingen Landbouwhogeschool Wageningen 72: 1162.Google Scholar
Ma, W.C. 1976. Mouth parts and receptors involved in feeding behaviour and sugar perception in the African Armyworm, Spodoptera exempta (Lepidoptera, Noctuidae). pp. 139–151 in Jermy, T. (Ed.), The Hostplant in Relation to Insect Behaviour and Reproduction. Plenum Press, New York, NY. 322 pp.Google Scholar
Maloney, P.J., Albert, P.J., and Tulloch, A.P.. 1988. Influence of epicuticular waxes from white spruce and balsam fir on feeding behavior of the Eastern Spruce Budworm. Journal of Insect Behavior 1: 197208.CrossRefGoogle Scholar
Merze, E. 1959. Pflanzen und Raupen. Uber einige Prinzipien der Futterwahl bei Gross-schmetterlingsraupen. Biologische Zentralblatt 78: 152188.Google Scholar
Miller, J.R., and Strickler, K.L.. 1984. Finding and accepting host plants. pp. 127–157 in Bell, W.J., and Cardé, R.T. (Ed.), Chemical Ecology of Insects. Chapman and Hall, London. 524 pp.Google Scholar
Saxena, S.N., Khatter, P., and Goyal, S.. 1976. Measurement of orientation responses of caterpillars indoors and outdoors on a grid. Experientia 33: 13121313.CrossRefGoogle Scholar
Schoonhoven, L.M., and Dethier, V.G.. 1966. Sensory aspects of host plant discrimination by lepidopterous larvae. Archives Néerlandaises de Zoologie 16: 497530.Google Scholar
Städler, E. 1986. Oviposition and feeding stimuli in leaf surface waxes. pp. 105–121 in Juniper, B., and Southwood, R. (Eds.), Insects and the Plant Surface. E. Arnold, London. 360 pp.Google Scholar
Städler, E., and Hanson, F.E.. 1975. Olfactory capabilities of ‘gustatory’ chemoreceptors of the tobacco hornworm larvae. Journal of Comparative Physiolgy 104: 97102.CrossRefGoogle Scholar
Waldbauer, G.P., and Fraenkel, G.. 1961. Feeding on normally rejected plants by maxillectomized larvae of the tobacco hornworm, Protoparce sexta (Lepidoptera, Sphingidae). Annals of the Entomological Society of America 54: 477485.CrossRefGoogle Scholar
Weevers, R. de G. 1965. Proprioceptive reflexes and the coordination of locomotion in the caterpillars of Antheraea pernyi (Lepidoptera). pp. 113–124 in Treheme, J.E., and Beament, J.W.L. (Eds.), The Physiology of the Insect Nervous System. Academic Press, New York, NY. 277 pp.Google Scholar
Willmer, P. 1986. Microclimatic effects on insects at the plant surface. pp. 65–80 in Juniper, B., and Southwood, R. (Eds.), Insects and the Plant Surface. E. Arnold, London. 360 pp.Google Scholar
Woodhead, S. 1983. Surface chemistry of Sorghum bicolor and its importance in feeding by Locusta migratoria. Physiological Entomology 8: 345352.CrossRefGoogle Scholar
Woodhead, S., and Chapman, R.F.. 1986. Insect behaviour and the chemistry of plant surface waxes. pp. 123–135 in Juniper, B., and Southwood, R. (Eds.), Insects and the Plant Surface. E. Arnold, London. 360 pp.Google Scholar