Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T01:46:40.210Z Has data issue: false hasContentIssue false

FLORAL USE BY TWO SYMPATRIC BUMBLE BEE SPECIES (BOMBUS TERRICOLA AND BOMBUS TERNARIUS): EFFICIENCY CONSIDERATIONS

Published online by Cambridge University Press:  31 May 2012

C.M.S. Plowright*
Affiliation:
School of Psychology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
R.C. Plowright
Affiliation:
Department of Zoology, University of Toronto, Toronto, Ontario, Canada M5S 1A1
*
1 Author to whom all correspondence should be addressed.

Abstract

The purpose of this study was to explain a peculiarity of resource use by two sympatric bumble bee species. In one study area, pronounced resource partitioning was observed: Bombus terricola Kirby was confined to Asclepias syriaca L. and Bombus ternarius Say to Apocynum androsaemifolium L., and yet in another area both species frequented Apocynum. Measurements of floral characteristics and forager behaviour on Apocynum led to an hypothesis regarding floral use by two bumble bee species: B. terricola is relatively inefficient at flying between flowers, and so tends to visit Apocynum only in areas where the plants are closely spaced. Half of the patch of Apocynum was clipped so as to decrease flower density, with the expectation that, as a result, the frequency of B. terricola relative to B. ternarius would be reduced. The prediction was confirmed. The results underscore the role of context in floral use by bees.

Résumé

L’objectif de cette recherche était de comprendre une particularité de l’utilisation de ressources par deux espèces de bourdons sympatriques. Dans un endroit de notre étude, une division marquée fut observée : Bombus terricola Kirby se limitait à Asclepias syriaca L. et Bombus ternarius Say se limitait à Apocynum androsaemifolium L., tandis que dans un autre endroit, les deux espèces se partageaient Apocynum. Des mesures furent obtenues sur les caractéristiques des fleurs et sur le comportement des ouvrières butinant sur Apocynum. Elles ont mené à une hypothèse au sujet de l’utilisation des ressources par les deux espèces de bourdons : B. terricola vole entre les fleurs inefficacement (en comparaison à B. ternarius), et donc a seulement tendance à visiter Apocynum aux endroits où les plantes sont moins bien espacées. Nous avons enlevé des fleurs d’une moitié d’un étendu afin de réduire la densité des fleurs, dans l’attente que la fréquence de B. terricola serait réduite par rapport à celle de B. ternarius. La prédiction fut confirmée. Les résultats soulignent le rôle du contexte dans l’utilisation des fleurs par les bourdons.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, R.J., and Nelder, R.A. 1978. The GLIM system, release 3: Generalised linear interactive modelling. Numerical Algorithms Group, Oxford.Google Scholar
Dukas, R., and Real, L.A. 1993. Learning constraints and floral choice behaviour in bumble bees. Animal Behaviour 46: 637644.CrossRefGoogle Scholar
Harder, L.D. 1985. Morphology as a predictor of flower choice by bumble bees. Ecology 66: 198210.CrossRefGoogle Scholar
Heinrich, B. 1976. Resource partitioning among some eusocial insects: bumblebees. Ecology 57: 874889.CrossRefGoogle Scholar
Heinrich, B. 1979. Bumblebee economics. Harvard University Press, Cambridge, MA.Google Scholar
Inouye, D.W. 1978. Resource partitioning in bumblebees: experimental studies of foraging behavior. Ecology 59: 672678.CrossRefGoogle Scholar
Inouye, D.W. 1980. The effect of proboscis and corolla tube lengths on patterns and rates of flower visitation by bumblebees. Oecologia (Berlin) 45: 197201.CrossRefGoogle ScholarPubMed
Jennersten, O., Berg, L., and Lehman, C. 1988. Phenological differences in pollinator visitation, pollen deposition and seed set in the sticky catchfly, Viscaria vulgaris. Journal of Ecology 76: 11111132.CrossRefGoogle Scholar
Kunin, W.E. 1993. Sex and the single mustard: population density and pollinator behavior effects on seedset. Ecology 74: 21452160.CrossRefGoogle Scholar
Laverty, T.M. 1980. Bumble bee foraging: floral complexity and learning. Canadian Journal of Zoology 58: 13241335.CrossRefGoogle Scholar
Laverty, T.M. 1994. Bumble bee learning and flower morphology. Animal Behaviour 47: 531545.CrossRefGoogle Scholar
Laverty, T.M., and Plowright, R.C. 1985. Competition between hummingbirds and bumble bees for nectar in flowers of Impatiens biflora. Oecologia (Berlin) 66: 2532.CrossRefGoogle ScholarPubMed
McCullagh, P., and Nelder, J.A. 1989. Generalized linear models. 2nd ed. Chapman and Hall, London.CrossRefGoogle Scholar
Medler, J.T. 1962. Morphometric studies on bumble bees. Annals of the Entomological Society of America 55: 212218CrossRefGoogle Scholar
Morse, D.H. 1978. Interactions among bumble bees on roses. Insectes Sociaux 25: 365371.CrossRefGoogle Scholar
Morse, D.H. 1982. Behavior and ecology of bumble bees. Vol. 3. pp. 245322in Hermann, H.R. (Ed.), Social insects, Academic Press, New York and London.Google Scholar
Olroyd, B., Rinderer, T., and Wongsiri, S. 1992. Pollen resource partitioning by Apis dorsata, A. cerana, A. andreniformis and A. florea in Thailand. Journal of Apicultural Research 31: 37.CrossRefGoogle Scholar
Pellmyr, O. 1988. Bumble bees (Hymenoptera: Apidae) assess pollen availability in Anemonopsis macrophylla (Ranunculaceae) through floral shape. Annals of the Entomological Society of America 81: 792797.CrossRefGoogle Scholar
Plowright, R.C., and Laverty, T.M. 1984. The ecology and sociobiology of bumble bees. Annual Review of Entomology 29: 175199.CrossRefGoogle Scholar
Plowright, C.M.S., and Plowright, R.C. 1997. The advantage of short tongues in bumble bees (Bombus)—analyses of species distributions according to flower corolla depth, and of working speeds on white clover. The Canadian Entomologist 129: 5159.CrossRefGoogle Scholar
Roubik, D. 1989. Ecology and natural history of tropical bees. Cambridge University Press, Cambridge, United Kingdom.CrossRefGoogle Scholar
Schmid-Hempel, P. 1987. Efficient nectar-collecting by honeybees. I. Economic models. Journal of Animal Ecology 56: 209218.CrossRefGoogle Scholar
Schmid-Hempel, P., Kacelnik, A., and Houston, A.I. 1985. Honeybees maximize efficiency by not filling their crop. Behavioral Ecology and Sociobiology 17: 6166.CrossRefGoogle Scholar
Ydenberg, R.C., Welham, C.V.J., Schmid-Hempel, R., Schmid-Hempel, P., and Beauchamp, G. 1994. Time and energy constraints and the relationships between currencies in foraging theory. Behavioral Ecology 5: 2834.CrossRefGoogle Scholar