Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T14:03:33.389Z Has data issue: false hasContentIssue false

Egg hatch of forest tent caterpillar (Lepidoptera: Lasiocampidae) on two preferred host species

Published online by Cambridge University Press:  22 August 2012

David R. Gray*
Affiliation:
Natural Resources Canada, Canadian Forest Service – Atlantic Forestry Centre, P.O. Box 4000, Fredericton, New Brunswick E3B 5P7, Canada
Don P. Ostaff
Affiliation:
Natural Resources Canada, Canadian Forest Service – Atlantic Forestry Centre, P.O. Box 4000, Fredericton, New Brunswick E3B 5P7, Canada
*
1Corresponding author (e-mail: [email protected]).

Abstract

Synchrony between herbivore and host phenology can be an important factor in herbivore fitness. The survival of first-instar forest tent caterpillar (FTC) (Malacosoma disstria Hübner; Lepidoptera: Lasiocampidae) larvae and performance of surviving larvae are reduced when egg hatch and host budbreak are asynchronous. Budbreak in trembling aspen (Populus tremuloides Michaux; Salicaceae) and largetooth aspen (Populus grandidentata Michaux; Salicaceae), two preferred hosts of FTC, differ by ∼14 days. We examined the phenological requirements of FTC egg hatch to see if an inherent difference exists between FTC egg masses on the two hosts, and if the difference would promote synchrony with each host. Egg masses from a haphazard selection of clones of each host were collected in a mixed stand of trembling and largetooth aspen in New Brunswick, Canada. Egg masses were subjected to controlled temperature regimes in the laboratory, and hatch was monitored daily. Despite the differences in host phenologies and the obvious benefits of being synchronised with host phenology, egg masses collected from trembling aspen began hatching only 3 days earlier, and completed hatching only 2 days earlier, than egg masses collected from largetooth aspen. Bet hedging is discussed as a possible strategy to explain the absence of host-specific synchrony between egg hatch of FTC and the hosts it selects for oviposition.

Résumé

Des masses d’œufs de livrée des forêts (Malacosoma disstria Hübner; Lepidoptera: Lasiocampidae) ont été recueillies sur des peupliers faux-trembles et des peupliers à grandes dents dans un peuplement mélangé de l'ouest du Nouveau-Brunswick, au Canada. Ces masses d’œufs ont été soumises à des régimes de température contrôlée en laboratoire, et une surveillance a été exercée quotidiennement afin d’établir le moment de l’éclosion. La phénologie du débourrement des deux hôtes diffère d'environ 14 jours, et des effets négatifs ont été observés chez les chenilles obligées de se nourrir de feuillage plus âgé. Toutefois, en dépit des différences liées à la phénologie des hôtes et des avantages évidents découlant de la synchronisation de l’éclosion avec la phénologie des hôtes, les masses d’œufs recueillies sur le peuplier faux-tremble (Populus tremuloides Michaux; Salicaceae) ont commencé à éclore trois jours avant, et avaient toutes éclos seulement deux jours avant celles récoltées sur le peuplier à grandes dents (Populus grandidentata Michaux; Salicaceae). La stratégie de minimisation des risques (bet hedging) apparaît comme une explication possible à l'absence de synchronisation spécifique à l'hôte entre l’éclosion des œufs de la livrée et la phénologie du débourrement de l'hôte sur laquelle les femelles déposent leurs œufs.

Type
Original Article
Copyright
Copyright © Her Majesty the Queen in Right of Canada 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Retired.

References

Allen, J.C. 1976. A modified sine wave method for calculating degree days. Environmental Entomology, 5: 388396.CrossRefGoogle Scholar
Baker, W.L. 1972. Eastern forest insects. United States Department of Agriculture, Forest Service, Washington, DC, United States of America.CrossRefGoogle Scholar
Barnes, B.V. 1969. Natural variation and delineation of clones of Populus tremuloides and P. grandidentata in northern Lower Michigan. Silvae Genetica, 18: 130142.Google Scholar
Barron, A.B. 2001. The life and death of Hopkins’ host-selection principle. Journal of Insect Behavior, 14: 725737.CrossRefGoogle Scholar
Earth Info. 2010. Global daily [compact disc]. EarthInfo, Inc., Boulder, Colorado, United States of America. Available from www.earthinfo.com.Google Scholar
Fitzgerald, T.D.Costa, J.T. 1986. Trail based communication and foraging behavior of young colonies of the forest tent caterpillar, Malacosoma disstria (Lepidoptera: Lasiocampidae). Annals of the Entomological Society of America, 79: 9991007.CrossRefGoogle Scholar
Fox, L.R.Morrow, P.A. 1981. Specialization: species property or local phenomenon. Science, 211: 887893.CrossRefGoogle ScholarPubMed
Gray, D.R. 2010. Hitchhikers on trade routes: a phenology model estimates the probabilities of gypsy moth introduction and establishment. Ecological Applications, 20: 23002309. doi:10.1890/09-1540.CrossRefGoogle ScholarPubMed
Gray, D.R. 2012. Using geographically robust models of insect phenology in forestry. In Phenology. Edited by X. Zhang. In Tech Publishing, Rijeka, Croatia. pp. 320.Google Scholar
Hanec, W. 1966. Cold-hardiness in the forest tent caterpillar, Malacosoma disstria Hubner (Lasiocampidae, Lepidoptera). Journal of Insect Physiology, 12: 14431449.CrossRefGoogle Scholar
Hodson, A.C.Weinman, C.J. 1945. Factors affecting recovery from diapause and hatching of eggs of the forest tent caterpillar, Malacosoma disstria Hbn. University of Minnesota Agricultural Experiment Station Technical Bulletin, 170: 131.Google Scholar
Hollander, M.Wolfe, D.A. 1973. Nonparametric statistical methods. John Wiley and Sons, New York, United States of America.Google Scholar
Hopper, K.R. 1999. Risk-spreading and bet-hedging in insect population biology. Annual Review of Entomology, 44: 535560.CrossRefGoogle ScholarPubMed
Hunter, A.F.Lechowicz, M.J. 1992. Foliage quality changes during canopy development of some northern hardwood trees. Oecologia, 89: 316323.CrossRefGoogle ScholarPubMed
Hunter, M.D. 1990. Differential susceptibility to variable plant phenology and its role in competition between two insect herbivores on oak. Ecological Entomology, 15: 401408.CrossRefGoogle Scholar
Ives, W.G.H. 1973. Heat units and outbreaks of the forest tent caterpillar, Malacosoma disstria (Lepidoptera: Lasiocampidae). The Canadian Entomologist, 105: 529543.CrossRefGoogle Scholar
Jennrich, R.I.Moore, R.H. 1975. Maximum likelihood estimation by means of nonlinear least squares. American Statistical Association Proceedings of the Statistical Computing Section, 5762.Google Scholar
Jones, B.C.Despland, E. 2006. Effects of synchronization with host plant phenology occur early in the larval development of a spring folivore. Canadian Journal of Zoology, 84: 628633.CrossRefGoogle Scholar
Laidly, P.R. 1990. Populus gradidentata Michx. Bigtooth aspen. In Silvics of North America, vol. 2: Hardwoods. Edited by R.M. Burns and B.H. Honkala. United States Department of Agriculture, Forest Service, Washington, DC, United States of America. pp. 544550.Google Scholar
Law, M.A.Kelton, W.D. 1982. Simulation modeling and analysis. McGraw-Hill, New York, United States of America.Google Scholar
Lieth, H. 1974. Phenology and seasonality modeling. Springer-Verlag, New York, United States of America.CrossRefGoogle Scholar
Logan, J.A., Wollkind, D.J., Hoyt, S.C., Tanigoshi, L.K. 1976. An analytic model for description of temperature dependent rate phenomena in arthropods. Environmental Entomology, 5: 11331140.CrossRefGoogle Scholar
Lorimer, N. 1979. Differential hatching times in the forest tent caterpillar (Lepidoptera: Lasiocampidae). Great Lakes Entomologist, 12: 199201.Google Scholar
Mattson, W.J.Erickson, G. 1978. Degree-day simulation and hatching of the forest tent caterpillar, Malacosoma disstria (Lepidoptera: Lasiocampidae). Great Lakes Entomologist, 11: 5961.Google Scholar
Mattson, W.J.Scriber, J.M. 1987. Nutritional ecology of insect folivores of woody plants: nitrogren, fiber and mineral considerations. In Nutritional ecology of insects, mites, spiders and related invertebrates. Edited by F. Slansky and J.G. Rodriguez. John Wiley, New York, United States of America. pp. 105146.Google Scholar
Ostaff, D.P.Quiring, D.T. 2000. Role of the host plant in the decline of populations of a specific herbivore, the spruce budmoth. Journal of Animal Ecology, 69: 263273.CrossRefGoogle Scholar
Parry, D.Goyer, R.A. 2004. Variation in the susceptibility of host tree species for geographically discrete populations of forest tent caterpillar. Environmental Entomology, 33: 14771487.CrossRefGoogle Scholar
Parry, D., Spence, J.R., Volney, W.J.A. 1998. Budbreak phenology and natural enemies mediate survival of first instar forest tent caterpillar (Lepidoptera: Lasicocampidae). Environmental Entomology, 27: 13681374.CrossRefGoogle Scholar
Quiring, D.T. 1992. Rapid change in suitability of white spruce for a specialist herbivore, Zeiraphera canadensis. Canadian Journal of Zoology, 70: 21322138.CrossRefGoogle Scholar
Raske, A.G. 1974. Hatching rates for forest tent caterpillar in the laboratory. Natural Resources Canada, Canadian Forest Service – Atlantic Forestry Centre, St. John's, Newfoundland, Canada. pp. 2425.Google Scholar
Roland, J. 1993. Large-scale forest fragmentation increases the duration of tent caterpillar outbreak. Oecologia, 93: 2530.CrossRefGoogle ScholarPubMed
SAS Institute. 1999. SAS/STAT® user's guide, version 8. SAS Institute, Inc., Cary, North Carolina, United States of America.Google Scholar
Scriber, J.M.Slansky, F. 1981. The nutritional ecology of immature insects. Annual Review of Entomology, 26: 183211.CrossRefGoogle Scholar
Seger, J.Brockman, H.J. 1987. What is bet-hedging? Oxford Surveys in Evolutionary Biology, 4: 182211.Google Scholar
van Asch, M.Visser, M.E. 2007. Phenology of forest caterpillars and their host trees: the importance of synchrony. Annual Review of Entomology, 52: 3755.CrossRefGoogle ScholarPubMed
Wagner, T.L., Wu, H.-I., Sharpe, P.J.H., Coulson, R.N. 1984. Modeling distributions of insect development time: a literature review and application of the Weibull function. Annals of the Entomological Society of America, 77: 475487.CrossRefGoogle Scholar
Witter, J.A. 1979. The forest tent caterpillar (Lepidoptera: Lasiocampidae) in Minnesota: a case history review. Great Lakes Entomologist, 12: 191196.Google Scholar