Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T11:14:40.603Z Has data issue: false hasContentIssue false

Effect of ultrasound on acetylcholinesterase activity in Helicoverpa armigera (Lepidoptera: Noctuidae)

Published online by Cambridge University Press:  02 April 2012

Yu-Ping Zha
Affiliation:
College of Plant Science and Technology and Key Laboratory of Insect Resource Utilization and Sustainable Pest Management of Hubei Province, Huazhong Agricultural University, Wuhan 430070, People's Republic of China, and College of Life Sciences, Huazhong Normal University, Wuhan 430079, People's Republic of China
Fen Xu
Affiliation:
College of Physical Science and Technology, Huazhong Normal University, Wuhan 430079, People's Republic of China
Qi-Cai Chen
Affiliation:
College of Life Sciences, Huazhong Normal University, Wuhan 430079, People's Republic of China
Chao-Liang Lei*
Affiliation:
College of Plant Science and Technology and Key laboratory of Insect Resource Utilization and Sustainable Pest Management of Hubei Province, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
*
2Corresponding author (e-mail: [email protected]).

Abstract

It is well known that noctuid moths respond to ultrasound frequencies produced by insectivorous bats performing a series of evasive maneuvers such as loops, dives, rolls, and turns. Certain ultrasound frequencies may be considered an environmental stress factor for these moths, causing physiological and behavioral effects. We investigated changes in acetylcholinesterase activity of Helicoverpa armigera (Hübner) exposed to ultrasound produced from a commercial device (LHC20). Our results indicated that stress effects on acetylcholinesterase activity resulting from exposure to ultrasound do not differ according to sex, but effects on different developmental stages of H. armigera differ significantly depending on duration of exposure. Enzyme activity increased in adults after 20 min exposure to ultrasound and decreased in pupae after 30 and 50 min exposure. Enzyme activity in larvae was reduced after 20 min and increased after 40 and 60 min. The results of this study also indicate that stress caused by exposure to ultrasound could modulate the cholinergic system in H. armigera.

Résumé

Il est bien connu que les papillons de nuit noctuidés réagissent aux fréquences ultrasoniques produites par les chauves-souris insectivores en exécutant une série de manoeuvres d’évitement, telles que des boucles, des plongeons, des tonneaux et des virages. Certaines fréquences ultrasoniques peuvent être considérées comme des facteurs environnementaux de stress pour ces papillons de nuit, ce qui peut causer des effets physiologiques et comportementaux. Nous étudions les changements de l’activité de l’acétylcholinestérase chez Helicoverpa armigera (Hübner) lors d’expositions à des ultrasons produits par un appareil commercial (LCH20). Nos résultats indiquent que les effets du stress dû à l’exposition aux ultrasons sur l’activité de l’acétylcholinestérase sont les mêmes chez les deux sexes; il y a, cependant, des effets significativement différents chez les divers stades de développement d’H. armigera en fonction de la durée de l’exposition. L’activité enzymatique s’accroît chez les adultes exposés à un stress ultrasonique pendant 20 minutes et décroît chez les nymphes après 30 ou 50 minutes. Chez les larves, l’activité enzymatique décroît après une exposition de 20 minutes et augmente après une exposition de 40 ou 60 minutes. Notre étude indique aussi que le stress causé par l’exposition aux ultrasons pourrait moduler le système cholinergique chez H. armigera.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharya, L., and McNeil, J.N. 1998. Predation risk and mating behavior: the responses of moths to bat-like ultrasound. Behavioral Ecology, 9: 552558.Google Scholar
Agee, H.R., and Webb, J.C. 1969. Ultrasound for control of bollworms on cotton. Journal of Economic Entomology, 62: 13221326.CrossRefGoogle Scholar
Appleyard, M.E. 1992. Secreted acetylcholinesterase: non-classical aspects of a classical enzyme. Trends in Neuroscience, 15: 485490.CrossRefGoogle ScholarPubMed
Baker, T.C., and Cardé, R.T. 1978. Disruption of gypsy moth male sex pheromone behavior by high frequency sound. Environmental Entomology, 7: 4552.CrossRefGoogle Scholar
Belzunces, L.P., Toutant, J.P., and Bounias, M. 1988. Acetylcholinesterase from Apis mellifera head: evidence for amphiphilic and hydrophilic forms characterized by Triton X-114 phase separation. Biochemical Journal, 255: 463470.CrossRefGoogle ScholarPubMed
Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248254.Google Scholar
Collier, B. 1977. Biochemistry and physiology of cholinergic transmission. In Handbook of physiology. Edited by Brookhart, J.M., Castle, V.B. Mount, Kandel, E.R., and Gieger, S.R.. American Physiological Society Press, Bethesda, Maryland. pp. 463602.Google Scholar
Conner, W.E. 1999. ‘Un chant d'appel amoureux’: acoustic communication in moths. Journal of Experimental Biology, 202: 17111723.CrossRefGoogle Scholar
Dawson, J.W., Kutsch, W., and Robertson, R.M. 2004. Auditory-evoked evasive manoeuvres in free-flying locusts and moths. Journal of Comparative Physiology A, 190: 6984.CrossRefGoogle ScholarPubMed
Ellman, G.L., Courtney, K.D., Andres, V., and Featherstone, R.M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7: 8895.Google Scholar
Harel, M., Kryger, G., Rosenberry, T.L., Mallender, W.D., Lewis, T., Fletcher, R.J., Guss, J.M., Silman, I., and Sussman, J.L. 2000. Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors. Protein Science, 9: 10631072.CrossRefGoogle ScholarPubMed
Huang, F., and Subramanyam, B. 2004. Behavioral and reproductive effects of ultrasound on the Indian meal moth, Plodia interpunctella. Entomologia Experimentalis et Applicata, 113: 157164.CrossRefGoogle Scholar
Huang, F., Subramanyam, B., and Taylor, R. 2003. Ultrasound affects spermatophore transfer, larval numbers, and larval weight of Plodia interpunctella (Hübner). Journal of Stored Products Research, 39: 413422.Google Scholar
Jing, X.F. 2004. Nocturnal insects' phototactic behavior to different light and the effects of black light on the enzyme in bollworm, Helicoverpa armigera. M.Sc. thesis, Huazhong Agricultural University, Wuhan, People's Republic of China. [In Chinese.]Google Scholar
Manikandan, S., Padma, M.K., Srikumar, R., Parthasarathy, N.J., Muthuvel, A., and Devi, R.S. 2006. Effects of chronic noise stress on spatial memory of rats in relation to neuronal dendritic alteration and free radical imbalance in hippocampus and medial prefrontal cortex. Neuroscience Letters, 399: 1722.CrossRefGoogle ScholarPubMed
Massoulié, J., Anselmet, A., Bon, S., Krejci, E., Legay, C., Morel, N., and Simon, S. 1999. The polymorphism of acetylcholinesterase: post-translational processing, quaternary associations and localization. Chemico-Biological Interactions, 119–120: 2942.Google Scholar
Miller, L.A., and Surlykke, A. 2001. How some insects detect and avoid being eaten by bats: tactics and countertactics of prey and predator. Bioscience, 51: 570581.CrossRefGoogle Scholar
Nakano, R., Ishikawa, Y., Tatsuki, S., Surlykke, A., Skalsand, N., and Takanashi, T. 2006. Ultrasonic courtship song in the Asian corn borer moth, Ostrinia furnacalis. Naturwissenschaften, 93: 292296.CrossRefGoogle Scholar
Nath, B.S., and Kumar, R.P.S. 1999. Toxic impact of organophosphorus insecticides on acetylcholinesterase activity in the silkworm, Bombyx mori L. Ecotoxicology and Environmental Safety, 42: 157162.Google Scholar
Norman, A.P., and Jones, G. 2000. Size, peripheral auditory tuning and target strength in noctuid moths. Physiological Entomology, 25: 346353.Google Scholar
Rodríguez, R.L., and Greenfield, M.D. 2004. Behavioural context regulates dual function of ultrasonic hearing in lesser waxmoths: bat avoidance and pair formation. Physiological Entomology, 29: 159168.Google Scholar
Samson, J., Devi, R.S., Ravindran, R., and Senthilvelan, M. 2006. Biogenic amine changes in brain regions and attenuating action of Ocimum sanctum in noise exposure. Pharmacology, Biochemistry and Behavior, 83: 6775.Google Scholar
Sembulingam, K., Sembulingam, P., and Namasivayam, A. 2003. Effect of acute noise stress on acetylcholinesterase activity in discrete areas of rat brain. Indian Journal of Medical Sciences, 57: 487492.Google Scholar
Skals, N., Plepys, D., and Löfstedt, C. 2003. Foraging and mate-finding in the silver Y moth, Autographa gamma (Lepidoptera: Noctuidae) under the risk of predation. Oikos, 102: 351357.CrossRefGoogle Scholar
Svensson, G.P., Skals, N., and Löfstedt, C. 2003. Disruption of the odour-mediated mating behaviour of Plodia interpunctella using high-frequency sound. Entomologia Experimentalis et Applicata, 106: 187192.CrossRefGoogle Scholar
Svensson, A.M., Löfstedt, C., and Skals, N. 2004. The odour makes the difference: male moths attracted by sex pheromones ignore the threat by predatory bats. Oikos, 104: 9197.Google Scholar
Waters, D.A. 2003. Bats and moths: what is there left to learn? Physiological Entomology, 28: 237250.CrossRefGoogle Scholar
Wu, K.J., and Gong, P.Y. 1997. A new and practical artificial diet for the cotton bollworm. Entomologia Sinica, 4: 277282.Google Scholar
Yack, J.E. 1993. Janus Green B as a rapid, vital stain for peripheral nerves and chordotonal organs in insects. Journal of Neuroscience Methods, 49: 1722.CrossRefGoogle ScholarPubMed