Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T07:15:22.107Z Has data issue: false hasContentIssue false

EFFECT OF THE PEA APHID, ACYRTHOSIPHON PISUM (HEMIPTERA (HOMOPTERA): APHIDIDAE), ON YIELD AND QUALITY OF FORAGE ALFALFA

Published online by Cambridge University Press:  31 May 2012

A. M. Harper
Affiliation:
Research Station, Agriculture Canada, Lethbridge, Alberta T1J 4B1
M. S. Kaldy
Affiliation:
Research Station, Agriculture Canada, Lethbridge, Alberta T1J 4B1

Abstract

The pea aphid, Acyrthosiphon pisum (Harris), affected yield by significantly reducing the mean height of aphid-susceptible Grimm alfalfa in a greenhouse experiment by 45%, the height of the longest stem by 35%, the green weight by 38%, the dry weight by 44%, and the fiber by 13%. There was limited change in quality of alfalfa. The percentages of protein, fat, total sugar, reducing sugar, dry matter, and nitrogen-free extract were not significantly different in the infested and non-infested alfalfa. Potassium was significantly lower in the infested plants but they contained more calcium, magnesium, and phosphorus. With the exception of isoleucine the amino acid composition was similar in the infested and non-infested alfalfa.

Résumé

Le puceron du pois, Acyrthosiphon pisum (Harris), a nui au rendement en réduisant significativement de 45% la taille moyenne du cultivar de luzerne Grimm sensible dans une expérience en serre, de 35% la hauteur de la tige la plus longue, de 38% le poids humide, de 44% le poids sec et de 13% la teneur cellulosique. Mais ces dégâts ont peu influé sur la qualité de la récolte. Les teneurs relatives en protéines, matières grasses, sucres totaux, sucres réducteurs, matière sèche et extraits non azotés ne diffèrent pas significativement chez la luzerne infestée et non infestée. La teneur en potassium est significativement plus faible chez les plants infestés, mais ceux-ci contiennent en revanche plus de calcium, de magnésium et de phosphore. À l'exception de l'isoleucine, la composition acido-aminée est semblable chez la luzerne infestée et non infestée.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Association of Official Analytical Chemists (AOAC). 1975. Official methods of analysis, 12th ed. AOAC, Washington, D.C.Google Scholar
Baker, D. 1977. Determining fiber in cereal. Cereal Chem. 54: 360365.Google Scholar
Barlow, C. A., Randolph, P. A., and Randolph, J. C.. 1977. Effects of pea aphids, Acyrthosiphon pisum (Homoptera: Aphididae), on growth and productivity of pea plants, Pisum sativum. Can. Ent. 109: 14911502.CrossRefGoogle Scholar
Bickoff, E. E., Kohler, G. O., and Smith, D.. 1972. Chemical composition of herbage. pp. 247–282 in Hanson, C. J. (Ed.), Alfalfa Science and Technology. Amer. Soc. Agron. 812 pp.Google Scholar
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F.. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350356.Google Scholar
Duncan, D. B. 1955. Multiple range and multiple F tests. Biometrics 11: 142.Google Scholar
Harper, A. M. and Kaldy, M. S.. 1978. Amino acid composition and other nutritional constituents of pea aphids, Acyrthosiphon pisum (Hemiptera (Homoptera): Aphididae), and their hosts, broad beans and alfalfa. Can. Ent. 110: 381384.CrossRefGoogle Scholar
Harper, A. M. and Lilly, C. E.. 1966. Effects of the pea aphid on alfalfa in southern Alberta. J. econ. Ent. 59(6): 14261427.Google Scholar
Harper, A. M., Miska, J. P., Manglitz, G. R., Irwin, B. J., and Armbrust, E. J.. 1978. The literature of arthropods associated with alfalfa. III. A bibliography of the pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae). Ill. agric. Exp. Stn. Spec. Publ. 50. 89 pp.Google Scholar
Kindler, S. D., Kehr, W. R., and Ogden, R. L.. 1971. Influence of pea aphids and spotted alfalfa aphids on stand, yield of dry matter, and chemical composition of resistant and susceptible varieties of alfalfa. J. econ. Ent. 64: 653657.CrossRefGoogle Scholar
Moore, S. 1963. On the determination of cystine as cysteic acid. J. biol. Chem. 238: 235237.CrossRefGoogle Scholar
Nelson, N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. biol. Chem. 153: 375380.CrossRefGoogle Scholar
Patch, E. M. 1938. Food-plant catalogue of the aphids of the world, including the Phylloxeridae. Maine agric. Exp. Stn Bull. 393: 35431.Google Scholar
Schram, E., S Moore, and Bigwood, E. J.. 1954. Chromatographic determination of cystine as cysteic acid. Biochem. J. 57: 3337.CrossRefGoogle ScholarPubMed
Spies, J. R. 1967. Determination of tryptophan in proteins. Anal. Chem. 39: 14121416.CrossRefGoogle ScholarPubMed
Spitz, H. D. 1973. A new approach for sample preparation of protein hydrolysates for amino acid analysis. Anal. Biochem. 56: 6673.Google Scholar
Technicon. 1963. Autoanalyzer Methodology: Method File N-20a-Sodium and Potassium. Technicon Instruments Corp., Chauncey, N.Y.Google Scholar
Ward, G. M. and Johnson, F. B.. 1962. Chemical methods of plant analysis. Can. Dep. Agric. Publ. 1064.Google Scholar