Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T05:17:53.016Z Has data issue: false hasContentIssue false

EFFECT OF BACILLUS THURINGIENSIS ON FEEDING AND ENERGY USE BY PLODIA INTERPUNCTELLA (LEPIDOPTERA: PYRALIDAE) AND TRIBOLIUM CASTANEUM (COLEOPTERA: TENEBRIONIDAE)1

Published online by Cambridge University Press:  31 May 2012

A.S. Abdel-Razek
Affiliation:
National Research Centre, Department of Pest and Plant Protection, Dokki, Cairo, Egypt
H.S. Salama
Affiliation:
National Research Centre, Department of Pest and Plant Protection, Dokki, Cairo, Egypt
N.D.G. White*
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
O.N. Morris
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
*
2Author to whom all correspondence should be addressed.

Abstract

Investigations were conducted to quantify the effects of treatment of cracked wheat, Triticum aestivum L. (Gramineae), kernels with sublethal and median-lethal concentrations of Bacillus thuringiensis Berliner 1915 (Eubacteriales: Bacillaceae) on the energy use by Plodia interpunctella (Hübner) 1813 and Tribolium castaneum (Herbst) 1797 larvae. Cumulative food consumption and egestion during insect development and the weight and energy values of adult insects were determined and oxygen consumption was estimated. At sublethal (4 μg/g wheat for P. interpunctella, 250 μg/g wheat for T. castaneum) and median-lethal (18 μg/g wheat for P. interpunctella, 1950 μg/g wheat for T. castaneum) concentrations, food consumption during development decreased from controls by 9.1% and 47.1%, respectively, for P. interpunctella and 14.4% and 38.2%, respectively, for T. castaneum. Egestion decreased by 9.5% and 61.5% for P. interpunctella and 19.4% and 47.3% for T. castaneum at these respective concentrations. Increasing B. thuringiensis had negative effects on food consumption and energy use by the insects. Levels of B. thuringiensis lower than required for complete control may assist in protecting grain from stored-product insects.

Résumé

Nous avons cherché à quantifier les effets de traitements de grains de blé concassé au moyen de concentrations sub-létales et moyennement létales de Bacillus thuringiensis Berliner 1915 (Eubacteriales : Bacillaceae) sur la dépense énergétique des larves de Plodia interpunctella (Hübner) 1813 (Lepidoptera : Pyralidae) et Tribolium castaneum (Herbst) 1797 (Coleoptera : Tenebrionidae). Les valeurs cumulatives de la consommation de nourriture et de l’égestion au cours du développement, de même que la masse des insectes adultes et leurs valeurs énergétiques, ont été déterminées; de plus, la consommation d’oxygène a été estimée. À des concentrations sub-létales (4 μg/g de blé dans le cas de P. interpunctella, 250 μg/g de blé dans le cas de T. castaneum) et moyennement létales (18 μg/g de blé dans le cas de P. interpunctella et 1950 μg/g de blé dans le cas de T. castaneum), la consommation de nourriture au cours du développement était de 9,1% ou de 47,1% plus faible que chez les insectes témoins selon la concentration dans le cas de P. interpunctella, et de 14,4% ou de 38,2% plus faible que chez les témoins dans le cas de T. castaneum. Toujours selon la concentration, l’égestion était de 9,5% ou de 61,5% plus faible que chez les témoins dans le cas du papillon et de 19,4% ou de 47,3% plus faible que chez les témoins dans le cas du ténébrion. L’augmentation des concentrations de B. thuringiensis a eu des effets négatifs sur la consommation de nourriture et la dépense énergétique des insectes. Les concentrations de B. thuringiensis plus faibles que les concentrations totalement létales peuvent protéger le grain contre les insectes ravageurs des denrées entreposées.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Contribution No. 1740 of the Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg.

References

Abdel-Razek, A.S. 1990. Bacillus thuringiensis and its role as a biological agent against some stored product insect pests. Ph.D. dissertation, Department of Entomology, Cairo University, Cairo, EgyptGoogle Scholar
American Association of Cereal Chemists. 1962 Cereal Laboratory Methods. 7th ed. St. Paul: American Association of Cereal ChemistsGoogle Scholar
Armstrong, J.W., Soderstrom, E.L. 1975. Malathion resistance in some populations of the Indianmeal moth infesting dried fruits and tree nuts in California. Journal of Economic Entomology 68: 505507Google Scholar
Benz, G. 1963. Physiopathology and histochemistry. pp. 299338in Steinhaus, E.A. (Ed.), Insect Pathology. Vol. 1. New York: Academic PressCrossRefGoogle Scholar
Bowker, L.S. 1979. The energetics of interactions of populations of Tribolium confusum and Tribolium castaneum. Environmental Entomology 8: 840–49CrossRefGoogle Scholar
Campbell, A., Sinha, R.N. 1974. An energy budget for the granary weevil Sitophilus granarius (L.). pp. 542–48 in Proceedings of the 1st International Working Conference on Stored Product Entomology, Savannah, GeorgiaGoogle Scholar
Campbell, A., Sinha, R.N. 1978. Bioenergetics of granivorous beetles, Cryptolestes ferrugineus and Rhyzopertha dominica (Coleoptera: Cucujidae and Bostrichidae). Canadian Journal of Zoology 56: 624–33CrossRefGoogle Scholar
Campbell, A., Singh, N.B., Sinha, R.N. 1976. Bioenergetics of the granary weevil, Sitophilus granarius (L.) (Coleoptera: Curculionidae). Canadian Journal of Zoology 54: 786–98CrossRefGoogle Scholar
Demianyk, C.J., Sinha, R.N. 1988. Bioenergetics of the larger grain borer Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae), feeding on corn. Annals of the Entomological Society of America 81: 449–59CrossRefGoogle Scholar
Falcon, L.A. 1971. Microbial control as a tool in integrated control programs. pp. 346–64 in Huffaker, C.B. (Ed.), Biological Control. New York: Plenum PressGoogle Scholar
Finney, D.J. 1971. Probit Analysis. 3rd ed. London, U.K.: Cambridge UniversityGoogle Scholar
Imura, O., Sinha, R.N. 1986. Bioenergetics of the Indianmeal moth, Plodia interpunctella (Lepidoptera: Pyralidae). Annals of the Entomological Society of America 79: 96103Google Scholar
Klekowski, R.Z., Prus, T., Zyromosky-Rudzka, H. 1967. Elements of the energy budget of Tribolium castaneum (Hbst) in its developmental cycle. pp. 859–79 in Petrusewicz, K. (Ed.), Secondary Productivity of Terrestrial Ecosystems. Warsaw, Poland: Panstwow Wydaunictwo, NaukowGoogle Scholar
Madrid, F.J., Sinha, R.N. 1982. Feeding damage of three stored product moths (Lepidoptera: Pyralidae) on wheat. Journal of Economic Entomology 75: 1017–20Google Scholar
McGaughey, W.H. 1978. Response of Plodia interpunctella and Ephestia cautella larvae to spores and parasporal crystals of Bacillus thuringiensis. Journal of Economic Entomology 71: 687–88CrossRefGoogle Scholar
Paine, R.T. 1971. The measurement and application of the calorie to ecological problems. Annual Review of Ecology and Systematics 2: 145–64Google Scholar
Phillipson, J. 1964. A miniature bomb calorimeter for small biological samples. Oikos 15: 130–39Google Scholar
SAS Institute Inc. 1995. User's Guide, Statistics. Raleigh: SAS Institute Inc.Google Scholar
Schesser, J.H., Bulla, J.L.A. 1979. Toxicity of parasporal crystal of Bacillus thuringiensis to the Indianmeal moth, P. interpunctella. Applied Environmental Microbiology 37: 1012–15CrossRefGoogle Scholar
Singh, N.B., Campbell, A., Sinha, R.N. 1976. An energy budget of Sitophilus oryzae (Coleoptera: Curculionidae). Annals of the Entomological Society of America 69: 503–12Google Scholar
Sinha, R.N. 1995. Stored grain ecosystems. pp. 132in Jayas, D.S., White, N.D.G., Muir, W.E. (Eds.), Stored Grain Ecosystems. New York: Marcel Dekker, Inc.Google Scholar
Sinha, R.N., Madrid, F.J., White, N.D.G. 1986. Bioenergetics of Ephestia cautella (Walker) (Lepidoptera: Phycitidae) feeding on stored wheat. Annals of the Entomological Society of America 79: 622–28CrossRefGoogle Scholar
Subramanyam, B.h., Hagstrum, D.W. 1996. Resistance measurement and management. pp. 331–97 in Subramanyam, B.h., Hagstrum, D.W. (Eds.), Integrated Management of Insects in Stored Products. New York: Marcel Dekker, Inc.Google Scholar
Travers, R.S., Martin, P.A.W., Reichaldeifer, C.F. 1987. Selective process for efficient isolation of soil Bacillus spp. Applied Environmental Microbiology 53: 1263–66CrossRefGoogle ScholarPubMed
White, N.D.G. 1995. Insects, mites, and insecticides in stored-grain ecosystems. pp. 123167in Jayas, D.S., White, N.D.G., Muir, W.E. (Eds.), Stored-Grain Ecosystems. New York: Marcel Dekker, Inc.Google Scholar
White, N.D.G., Demianyk, C.J. 1999. The bioenergetics of insects feeding on stored cereals. In Barlow, A. (Ed.), Energy and Insect Populations. Recent Research Developments in Entomology. Trivandrum, India: Research Signpost. In pressGoogle Scholar
White, N.D.G., Sinha, R.N. 1981. Energy budget of Oryzaephilus surinamensis (Coleoptera: Cucujidae) feeding on rolled oats. Environmental Entomology 10: 320–26CrossRefGoogle Scholar
White, N.D.G., Sinha, R.N. 1987. Bioenergetics of Cynaeus angustus (Coleoptera: Tenebrionidae) feeding on stored corn. Annals of the Entomological Society of America 80: 184–90Google Scholar
Wiegert, R.G., Petersen, C.E. 1983. Energy transfer in insects. Annual Review of Entomology 28: 455–86CrossRefGoogle Scholar